

水撃圧プログラム 2010 (Excel 版) V1.5.0

マニュアル

2022 年 4 月

ハイドロシステム株式会社

1	機能構	既要	1
	1-1	対応システム	1
	1-2	機能概要	2
	(1)	管水路非定常水理計算	2
	(2)	対応できる施設	2
	1-3	プログラムのファイル構成	3
2	プログ	ブラムのインストール	5
	2-1	インストール	5
	(1)	インストール用ファイルとインストールの開始	5
	(2)	Windows Installer 4.5 のインストール	6
	(3)	.NET Framework のインストール	8
	(4)	Windows Installer . NET Framework のオフラインインストール	9
	(5)	プログラムのインストール	10
	(6)	プログラムのアンインストール	13
	2-2	Excel アドインとツールバー	15
	(1)	セキュリティの設定	15
	(2)	ツールバーの表示	16
	(3)	ツールバーボタンの概要	17
	(4)	ツールバーを非表示にする	18
	(5)	アドインの再起動	18
	(6)	手作業によるアドイン登録	19
	2-3	プログラムの登録/登録情報の取得	20
	2-4	ヘルプの表示	21
	2-5	サンプル版での制限事項	21
3	デーク	マの作成	22
	3-1	管路のモデル化	22
	3-2	データファイルの概要	23
	(1)	データファイルに含まれるワークシート	23
	(2)	新規データファイル	24
	(3)	ワークシートでのセルの保護	24
	(4)	データファイルリストの整理	25
	3-3	データの作成	26
	(1)	計算時間	26
	(2)	節点・管路	29
	(3)	管路縦断	33
	(4)	境界条件	34
	(5)	時間変化パターン	35
	(6)	水槽	39

---- 目 次 ----

	(7)	バルブ	39
	(8)	ポンプ	40
	(9)	出力条件	42
	3-4	計算の実行	44
	3-5	結果の表示	45
	(1)	表出力・縦断図	45
	(2)	時間変化グラフ	49
	3-6	計算の進め方	51
	(1)	初期值	51
	(2)	定常流れの作成	51
	(3)	水撃圧の検討対象となるバルブ、ポンプの操作	52
	(4)	収束しない場合	52
4	バルフ	「特性データの作成	53
5	サンフ	プルデータ	59
	5-1	Sample1	59
	5-2	Sample2	64
	5-3	Sample3	65
	5-4	Sample4	67
	5-5	Sample5	68
	5-6	Sample6	69
	5-7	Sample7	73
6	プロク	ブラムサポート	75
7	使用評	F諾契約書	76
	1. 使用	1権の許諾	76
	2. 保証	E及び責任の制限	76
	3. 期間	Ĵ	76
	4. その	>他	76

修正履歴

2011/1/11 バージョン 1.1

- (1) 管路長に小数点以下の値を含む場合、管路縦断データで内部の誤差のためエラーが生じる点を修正しました。
- (2) <最高最低>シートへの出力に管路節点の出力を追加、短管路を含む場合に表示されない節点が生じることを回避しました。
- (3) 縦断図に短管路を含めることができるようにしました。
- (4) 縦断図、縦断結果の出力点は、計算点のみを出力していましたが、管路縦断データで 指定された点を含めて出力するように修正しました。

2011/6/21 バージョン 1.1.1

- (1) ポンプ停止時にゼロでない流量がポンプ枝に計算される場合があるという不具合を 修正しました。
- (2) 短管路とポンプ、バルブをつないだとき、ポンプを停止、バルブを閉鎖した場合、接続点の水位が正しく求められない点を注意事項として記載しました。

-><節点管路>シート

- 2011/8/24 インストール時の記述修正、Excel2010 対応の説明追加
- (1) インストール時の「インストールフォルダーの選択」画面で「すべてのユーザー」を 選択するように記述していましたが、「すべてのユーザー」を選択するとインストー ル時のアドイン登録が正常に行われないので、「このユーザーのみ」を選択するよう に記述を修正しました。
- (2) Excel2010 による動作確認が終了したので、Excel2010 に関する記述を追加しました。
- 2012/6/19 バージョン 1.1.2
- (1) ポンプデータの説明で、H列の説明をG列と表記していた点を修正
- (2) 節点名、管路名が二重に定義された場合にエラーを表示するように修正
- 2012/7/5 バージョン 1.1.3
- (1) バルブ操作の「パターン」データで、緩開、緩閉動作を近似するベジエ曲線補間を指定できるように修正しました。
- (2) 既定のバルブ特性データ(Vlave.xls)を修正しバルブ種類を大幅に追加しました。
- 2012/10/12 バージョン 1.1.4
- (1) <管路縦断>データに静水位を指定できるようにしました。
- (2) <縦断結果>シートの表示項目を増やし、MPa 単位の圧力、静水位、静水位上の圧力 などを表示するようにしました。
- (3) 縦断グラフに静水位の表示を追加しました。
- バルブ特性ファイル(Valve.xls)に Excel 2007/2010 用ファイル(Valve.xlsx)を追加しました。これにより、Excel2007/2010 では Valve.xlsx を優先して開きます。
- (5) 添付されている Sample1.xls のデータがマニュアルの説明と異なっていた点を修正しました。
- (6) 伝播速度計算用のファイルを追加しました。
- (7) 当社移転によりマニュアル奥付の修正を行いました。
- 2014/5/7 バージョン 1.1.5
- (1) Excel 2013 でツールバーのファイルリストがウィンドウごとに一致しない、アドイン を閉じてもツールバーが消えないという問題を修正しました。
- (2) Excel 2007/2010/2013 で縦断図、時間変化図を作成するとグラフの線が太めになる、 軸ラベル文字がボールドになる、軸・格子線が灰色になるという Excel の仕様変更に よる影響が生じていましたが、Excel2003 で使用したときと同様なグラフを作成する ように修正しました。
- (3) 例題のファイルを Excel2007 形式の xlsx ファイルに変更しました。例題のシートで 設定しているシート保護をゆるめ、セル書式の設定などをシート保護解除しなくても 可能にしました。

- 2014/8/31 バージョン 1.1.6
- (1) バージョン 1.1.5 のマニュアルファイルが印刷できない設定になっている点を修正しました。
- (2) サンプル版の Excel ファイルで一部のシートのシート保護を解除しないとデータが入 力できない点を修正しました。
- 2016/9/20 バージョン 1.1.8 バージョン 1.1.7 は都合によりリリースされていません
- (1) Excel2016 を使用したときに起動時にエラーになる点を修正しました。
- (2) 開放バルブが存在する場合などで解が収束しないことがある点を一部改良しました。
- 2017/1/23 バージョン 1.2.0
- (1) 縦断図に含まれる管路数が多い場合、タイトル部分で Excel2007 では"#####"の表示
 になり、Excel2010 以上ではエラーが発生する点を修正しました。
- (2) 64 ビット版の Excel に対応したプログラムの提供を始めました。

2018/10/1 バージョン 1.3.0

- (1) 結果を Excel に格納する方法を改善し、処理時間を短縮しました。
- (2) グラフの横サイズを大きくしました。
- (3) <パターン>シートにデータが指定されていない場合エラーを表示するように修正 しました。

2022/4/28 バージョン 1.5.0

- (1) 開発環境を最新版のものに変更しました、これにより一部 OS で一部動作しない点が 修正されました。機能面の変更はありません。
- (2) マニュアル内で Excel2007 に関する記述を削除しました。

1 機能概要

1-1 対応システム

本プログラムを動作させるためには、 Microsoft Windows 8/10 のいずれかが動作するパーソナルコ ンピュータが必要です。

また、次のソフトウェアが必要です。

・Microsoft .NET Framework(ドットネットフレームワーク) 4.8

Microsoft .NET Framework の対応するバージョンがインストールされていない場合、

プログラムインストール時に同時に入れることができます。

Microsoft Windows Installer 4.5

プログラムインストールに必要です。プログラムインストール時に同時に入れることができます。 ・Microsoft Excel 2010/2013/2016/2019/2021 のいずれか、または Microsoft365 でインストールさ れる

Excel

Excel2010 以上の 64 ビット版には対応します。(2017/1 バージョン 1.2.0 より)

Excel のバージョン確認方法は、下記サイトを参考にして下さい。

http://office.microsoft.com/ja-jp/word-help/HA010361023.aspx

Microsoft Excel は、本製品には付属しておりません、別途お買い上げください。

(2017/1 追記)Windows XP/7、Excel2003 はマイクロソフト社のサポートが終了していますので、本プロ グラムでも正規の対応はいたしません。

(2018/10 追記)Excel2007 はマイクロソフト社のサポートが終了していますので、本プログラムでも正 規の対応はいたしません。

(2018/8 追記)

<u>64 ビット版は Windows が 64 ビット版であるだけでは動作しません。Excel が 64 ビット版である必要があります。</u>64 ビット版の Windows に 32 ビット版の Excel が動作していることが多くあります。 Excel が 32 ビット版であるか 64 ビット版であるかを確認してからインストール願います。

Excelのバージョンを判定するには次のようにします。

実行している Excel のバージョンを確認するには、Excel を開き、「アカウント」から「Excel のバージ

ョン情報」「「ジョン情報」を押してください。

バージョン情報の1行目に、バージョン番号が表示され右端に32ビットまたは64ビットと表示されます。下図はExcel2016の表示例で、32ビット版の場合です。

Microsoft® Excel® 2016 のバージョン情報	
Microsoft® Excel® 2016 MSO (16.0) 32 ビット	

Windows が 64 ビットでも、Excel は 32 ビットの場合がありますので、注意してください。

1-2 機能概要

(1) 管水路非定常水理計算

管水路では、バルブを閉鎖したときなどに圧力波が発生します。この圧力波が水撃圧と呼ばれるもので、 大きな水撃圧は管水路の破断につながるおそれがあります。水撃圧を推定する方法には、経験則など簡 易な方法もありますが、水の圧縮性を考慮した管水路の非定常水理計算(過渡現象解析)を行うことによ り、より実際の現象に近い解析を行うことができます。

本プログラムは、水の圧縮性を考慮した管水路の非定常水理計算を特性曲線法で計算します。

非定常水理計算は、水撃圧より緩やかなサージング現象も解析することができます。

(2) 対応できる施設

本プログラムでは、管路に付属する次の施設を取り扱うことができます。

【バルブ】

過渡現象を扱うので、開度と開度に応じた損失水頭(過渡的なバルブ特性)を表現できます。

損失水頭は、損失係数または流量係数で表すことができ、開度との関係を任意に入力することができま す。

バルブ特性は、バルブメーカ等から提供される特性図を使って数値化し入力します。

バルブ開度の時間変化は、時刻と開度の任意の組み合わせで与えることができます。

水槽に設定されたフロートに連動してバルブ開度が変化するフロートバルブにも対応しています。この 場合、バルブ吐出点が水槽内にある場合でも、水槽の水面上にある場合でも扱うことができます。

【水槽】

水槽水位の変化を計算できます。

水槽は、水位により水面積が変化しない直方体形状の水槽に対応しています。

【堰】

水槽と水槽が越流堰でつながっている場合に越流堰の計算を行うことができます。

越流堰は、刃型堰の公式で越流量を計算します。

【ポンプ】

管路に直結したポンプを扱うことができます。ポンプの流量と揚程の関係を表すポンプ特性を、二次曲 線で表現できます。

扱うことのできる流れは、正転正流状態のみです。また、連動する吐出弁、逆止弁は扱えません。

【流量境界】

水槽からの分水など流量を与えることができます。境界流量の時間変化は任意に与えることができます。 【水位境界】

バルブの吐出口など水位が一定の点を作ることができます。

1-3 プログラムのファイル構成

本プログラムは,次のファイルから構成されます。

ファイル名	説明
水撃圧プログラム 2010.xla	Excel2003 形式のアドイン
	Excel2007 以降でもそのまま使用できます。
	水撃圧計算のデータファイルの読み込み、計算ライブラリの呼び出
	し、計算結果の読み込み、グラフの作成を行います
HydroObjects.dll(*)	計算ライブラリ
HydroObjects.tlb(*)	計算ライブラリの定義ファイル
RegistAddIn.exe	アドインを登録するプログラム
RegistAddIn.exe.config	RegistAddIn.exe の実行環境定義
UnregistAddIn.exe	アドインを登録解除するプログラム V1.5.0 で追加
UnregistAddIn.exe.config	UnregistAddIn.exe の実行環境定義 V1.5.0 で追加
Valve.xls	バルブ特性を保存するファイル
Valve.xlsx	バルブ特性を保存するファイル(Excel2007 以降用)
	V1.1.4 で追加
伝播速度.xls	伝播速度計算用 V1.1.4 で追加
伝播速度.xlsx	伝播速度計算用 V1.1.5 で追加 Excel2007 形式

以上のプログラムは、インストールでコピーされます。

64 ビット版の場合(*)のファイルは、32 ビット版と名称は同じですが中身が異なります。その他は同一のファイルです。(v1.2.0 2017/1 追記)

Excel 2003 形式の Valve.xls、伝播速度.xls の添付は取り止めました。(V1.3.0 2018/10)

Valve.xls は、Excel2007 で編集し、Excel2007 形式のファイル(.xlsx、.xlsb)で保存することもできます。

ファイル名	説明
FileList.txt	データファイル一覧の保存ファイル
UserInfo.txt	ライセンス情報を記録したファイル

FileList.txt は、アドインでデータファイルの指定をすることにより、インストールフォルダ内に自動的 に作成されます。初期インストール時は、存在しません。

UserInfo.txt は、製品版を登録したときに作成されます。UserInfo.txt を変更するとプログラムが動作しなくなる可能性があります。UserInfo.txt を編集しないで下さい。

データファイルは、Excelのワークブックで、ファイル名は任意です。Excel2003以前の形式(.xls)でも、 Excel2007以降の形式(.xlsx、.xlsb)でもどちらでもかまいません。お使いの Excelのバージョンにした がって保存して下さい。

計算を実行すると、計算結果ファイルが、自動的に作成されます。

ノアイルの振士により次の揮組が区別され	れます。	
---------------------	------	--

拡張子	前明
.xls	データファイル Excel97-2003 形式ブック
.xlsx	データファイル Excel2007 形式ブック
.xlsb	データファイル Excel2007 形式バイナリブック
.rst	計算結果ファイル 時刻ごとの計算結果を、すべての計算点について保存します バイナリ形式ですのでプログラムを使用しないと読み込めませ ん
.rsm	計算結果ファイル 最高水位、最低水位を保存します テキスト形式のファイルです

次のサンプルデータファイルとドキュメントファイルがインストールされます。

ファイル名	説明
Sample1.xls	サンプルデータ
Sample1_SG.xls	サンプルデータ
Sample2.xls	サンプルデータ
Sample3A.xls	サンプルデータ
Sample3B.xls	サンプルデータ
Sample4.xls	サンプルデータ
Sample5.xls	サンプルデータ
Sample6.xls	サンプルデータ
Sample6B.xls	サンプルデータ V1.1.5 で追加
Sample7.xls	サンプルデータ
Sample1.xlsx	サンプルデータ
Sample1_SG.xlsx	サンプルデータ
Sample2.xlsx	サンプルデータ
Sample3A.xlsx	サンプルデータ
Sample3B.xlsx	サンプルデータ
Sample4.xlsx	サンプルデータ
Sample5.xlsx	サンプルデータ
Sample6.xlsx	サンプルデータ
Sample6B.xlsx	サンプルデータ
Sample7.xlsx	サンプルデータ
水撃圧プログラム 2010.pdf	ドキュメント このマニュアル

色は Excel 2007 形式のファイル V1.1.5 で追加

Excel 2003 形式のサンプルデータの添付は取り止めました。(V1.3.0 2018/10)

2 プログラムのインストール

2-1 インストール

(1) インストール用ファイルとインストールの開始

ダウンロードされたファイルは、自己解凍ファイルです。適当な場所に格納して実行して下さい。 次のファイルが展開されます。

setup.exe、Setup.msi、水撃圧プログラム 2010.pdf インストール用ファイルは、次の 2 個のファイルです。

setup.exe

Setup.msi

インストールを開始するには、マイコンピュータまたはエクスプローラを開き、これらのファイルのいずれかを、ダブルクリックします。

2個のファイルのいずれを選んでもかまいません。

<u>64 ビット版は Windows が 64 ビット版であるだけでは動作しません。Excel が 64 ビット版である必要があります。</u>64 ビット版の Windows に 32 ビット版の Excel が動作していることが多くあります。 Excel が 32 ビット版であるか 64 ビット版であるかを確認してからインストール願います。

Excelのバージョンを判定するには次のようにします。

実行している Excel のバージョンを確認するには、Excel を開き、「アカウント」から「Excel のバージ

ョン情報」
「ーション情報」を押してください。

バージョン情報の1行目に、バージョン番号が表示され右端に32ビットまたは64ビットと表示されます。下図はExcel2016の表示例で、32ビット版の場合です。

Microsoft® Excel® 2016 のバージョン情報	
Microsoft® Excel® 2016 MSO (16.0.) 32 ビット

Windows が 64 ビットでも、Excel は 32 ビットの場合がありますので、注意してください。

注意:インストール開始前には、できるだけ他のアプリケーションの実行を終了させておいて下さい。 い。特に、Excelは、必ず終了させておいて下さい。

64 ビット版の場合次の表示が出ることがあります。(v1.2.0 2017/1 追記)

「この製品は x64 プラットフォーム用に設計されていますが、Intel にインストールしようとしていま

す。製造元から正しいセットアップを入手してください。」

お使いのパソコンの OS が 32 ビット版の場合に表示されます。

メッセージは Windows インストーラが表示するものです。

インストールを中止して、32ビット版のプログラムをインストールしてください。

「このプログラムには 64bit 版 Excel が必要です」

お使いのパソコンにインストールされている Excel が 32bit 版の場合に表示されます。 インストールを中止して、32 ビット版のプログラムをインストールしてください。 (v1.5.0 2021/10 追記)

「このプログラムには 32bit 版 Excel が必要です」

お使いのパソコンにインストールされている Excel が 64bit 版の場合に表示されます。 インストールを中止して、64 ビット版のプログラムをインストールしてください。

インストーラーでは、Excel が 32 ビット版であるか 64 ビット版であるかをインストールされているフ オルダーで判定します。"C:¥Program Files (x86)"以下にインストールされている場合は 32 ビット版と 見なし、"C:¥Program Files"以下にインストールされている場合は 64 ビット版と見なします。

稀に 32 ビット版の Excel が"C:¥Program Files"以下にインストールされている場合があります。この 場合には水撃圧プログラムをインストールできません。32 ビット版の Excel が"C:¥Program Files"以 下にインストールされている場合には特別なインストーラーが必要になりますので、当社までご連絡く ださい。

(2) Windows Installer 4.5 のインストール

お使いのコンピュータに、Windows Installer 4.5 がインストールされていないとき、インストールプロ グラムは、次の画面を表示し自動的に Windows Installer 4.5 のインストールをインターネットを通して 行います。Windows Installer 4.5 がインストールされているときは、(3).NET Framework のインストー ルに進みます。また、Microsoft .NET Framework4.5 がインストールされているときは、(5)プログラム のインストールに進みます。

水 撃 圧 プロ グラム 2010 セット アップ
インストールするコンポーネント:
次のライセンス条項をお読みください。PageDown キーを使って スクロールしてください。
マイクロソフト ソフトウェア ライセンス条項
MICROSOFT WINDOWS INSTALLER, VERSION 4.5
本マイクロソフト ライセンス条項(以下「本ライ センス条項」といいます)は、お客様とMicrosoft Corporation(「以下「マイクロソフト」といいます)との契約を構成します。以下の条項を注意してお読 ✓
印刷用のライセンス条項 (MSLT) を表示する
ライセンス条項に同意しますか?
[同意しない] を選ぶとインストールを中止します。インストール するには、この契約に同意してください。 同意する(<u>A</u>) 同意しない(<u>D</u>)

インターネットに接続されていない場合、「同意しない」ボタンを押してインストールを中止し、オフラ

インで Windows Installer 4.5 のインストールを行ってください。

「同意する」を押すと、インストールが開始されます。

◎水撃圧プログラム2010 セットアップ 🛛 🛛 🛛 🛛 🔀
🔂 続行する前に再起動してください。
今すぐ再起動するには [はい] を選択してください。後から手動で再起動する には [いいえ] を選択してください。 詳細(<u>D</u>) >> はい いいえ
る 水撃圧プログラム2010 ヤットアップ
🐻 続行する前に再起動してください。
今すぐ再起動するには [はい] を選択してください。後から手動で再起動する には [いいえ] を選択してください。 詳細(<u>D</u>) << はい いいえ
次のコンポーネントは正常にインストールされました: -
次のコンポーネントは再起動の後インストールされます: - Microsoft .NET Framework 4 (x86 および x64)

インストーラが、システムの再起動を要求しますので、表示に従って「はい」を押してシステムを再起 動してください。

再起動後は、再起動前と同じユーザ名でコンピュータにログインしてください。

コンピュータが起動すると、自動的にインストールが再開され、Microsoft.NET Framework のインストールが行われます。

水撃圧プログラム2010 セットアップ		
6	Microsoft .NET Framework 4 (x86 および x64) をインストールしていま す	
	キャンセル(<u>C</u>)	

(3) .NET Framework のインストール

お使いのコンピュータに、Microsoft.NET Framework(ドットネットフレームワーク)4.0 がインストール されていないとき、インストールプログラムは、次の画面を表示し自動的に.NET Framework のインス トールをインターネットを通して行います。

	_
🐻 水撃圧プログラム2010 セットアップ	×
インストールするコンポーネント:	
Microsoft .NET Framework 4 (x86 および x64)	
	-7
- 次のフイセンス余項をお読みくたさい。PageDown モーを使っ - フクロールしてください	C
	*
マイクロソフトソフトウェア追加ライセンス条項	-
MICROSOFT WINDOWS オペレーティング システム用 MICROSOFT .NET	
FRAMEWORK 4	
MICROSOFT WINDOWS オペレーティング システム 用MICROSOFT_NET	
FRAMEWORK 4 CLIENT PROFILE	
お上び関連する LANGUAGE PACK	
Microsoft Corporation またはお客様の所在地に応じては、その関連会社 (以	Ŧ
□ FDRI田のライセンフ冬頂 (MSIT) を実示する	
ライセンス条項に同意しますか?	
 同章しない を選ぶとインストールを中止します。インストー	- 11,
するには、この契約に同意してください。	10
<u>同意する(A)</u> 同意しない(<u>D</u>)	

.NET Framework のインストールを行う場合は、必ずお使いのコンピュータをインターネットに接続しておいて下さい。

インターネットに接続されていない場合、「同意しない」ボタンを押してインストールを中止し、オフラ インで.NET Framework のインストールを行ってください。

「同意する」を押すと、.NET Frameworkのダウンロード、インストールが開始されます。

.NET Framework のダウンロードが終了すると、Windows Vista では、"ユーザアカウント制御"の画面が 表示されます。「続行」ボタンを押して処理を続けてください。

ユーザー アカ!	ウント制御		
לים ל	ラムを続行するにはあなたの許可が必要で	ज	
あなたが開始	省したプログラムである場合は、続行して	ください。	
	dotNetFx40LP_Full_x86_x64ja.exe		
	Microsoft Corporation	Windows	Vista の場合
⊘ 詳細(<u>D</u>)	〔 〔〔 <u>〔</u> 〕	キャンセル	
ユーザー アカ されるのを防	ウント制御は、あなたの許可なくコンピ. ぎます。	ユータに変更が適用	
🐱 水撃圧プログラム 1000 Micro ます。	、2010 セットアップ soft .NET Framework 4 (x86 および x64) を 	インストールしてい	1
		=++ンセル(<u>C</u>)	

.NET Framework のインストールには、多少時間を要します。中断せずに続けてください。 .NET Framework のインストールが終了すると、プログラムのインストール開始画面に変わります。

(4) Windows Installer . NET Framework のオフラインインストール

Windows Installer .4.5 NET Framework 4.8 がインストールされてなくて、お使いのコンピュータが インターネットに接続されていない場合、オフラインでこれらをインストールする必要があります。

オフラインインストール用のファイルは、インターネットに接続されたコンピュータを使用してマイクロソフトのサイトからダウンロードしてください。

ダウンロードサイトは次の通りです。

Windows Installer 4.5

http://www.microsoft.com/downloads/details.aspx?displaylang=ja&FamilyID=5a58b56f-60b6-4412-95b9-54d056d6f9f4

.NET Framework 4.8

https://dotnet.microsoft.com/ja-jp/download/dotnet-framework/net48

(5) プログラムのインストール

「次へ」ボタンを押して続けてください。

お 学 圧 プ ロ グ ラ ム 2010	
インストール フォルダーの選択	
インストーラーは次のフォルダーへ 水撃圧プログラム2010 をインスト	ールします。
このフォルダーにインストールするには[次へ]をクリックしてください。 インストールするには、アドレスを入力するか[参照]をクリックしてく1	。別のフォルダーに ささい。
フォルダー(E): C:¥HydroSystems¥水撃圧ブログラム2010¥	参照(R)
	ディスク領域(<u>D</u>)
水撃圧プログラム2010 を現在のユーザー用か、またはすべてのユーザ す:	ー用にインストールしま
◎ すべてのユーザー(E) ● このユーザーのみ(M)	
キャンセル 〈戻る(目)	次へ(N) >

「このユーザーのみ」を選択してください。「すべてのユーザー」を選択した場合、インストール時のア ドイン自動登録ができず、後で手動で登録する必要があるという問題が生じます。「このユーザーのみ」 を選択するとインストトールで正常にアドイン登録が出来ます。(2011/8/23 追加修正)

インストール先は、C:¥HydroSystems¥水撃圧プログラム 2010 フォルダになります。

64 ビット版の場合 C:¥HydroSystems¥水撃圧プログラム 2010 64 になります。(v1.2.0 2017/1)

変更したい場合には、フォルダー名を直接編集するか、「参照」 ボタンを押して別のフォルダを指定して ください。本プログラムは、実行時にインストール先フォルダに書き込みを行います。

Windows 7 以降の場合、インストール先フォルダを、"Program Files"フォルダ、または"Program Files (x86)"フォルダにすると書き込み時にエラーが生じます。Windows 7 以降の場合、インストール先フォルダを、"Program Files"フォルダ、または"Program Files (x86)"フォルダにしないで下さい。

「次へ」ボタンを押してインストールを続けます。

この画面のあとで、プログラムファイルをコピーするなどのインストール作業が始まります。 「次へ」ボタンを押すと、インストール作業を始めます。

プログラムファイルのインストールが終わると、Excel にアドインを登録するため、コマンドプロンプ ト画面が表示されます。

コマンドプロンプト画面で次の表示が出ます。

上の青枠の部分は、V1.5.0から追加された部分で計算用ライブラリを登録する作業を表示します。 緑枠の部分は、Excel 用のアドインの登録作業を示します。

Addln 登録終了の表示が出るまでしばらく時間がかかります

「Enter キーを押してください」の表示が出たら"Enter"キーを押してください。コマンドプロンプト画面が消えます。

登録中にエラーが発生するとメッセージが表示されます。解決できないときは、ご連絡下さい。

アドインは、Excel を開いて手作業で登録することもできます。

インストールが終了したら次の画面が表示されます。

🚽 水撃圧プログラム2010	- • •
インストールが完了しました。	
水撃圧ブログラム2010 は正しくインストールされました。 終了するには、 [閉じる]をクリックしてください。	
Windows Update で、NET Framework の重要な更新があるかどうかを確認	?してください。
キャンセル < 戻る(B)	開じる(0)

注意) インストールした状態では、サンプル版の状態になっています。

ご購入された方は、インストール後、<u>2-3 プログラムの登録/登録情報の取得</u>に示す方法にしたがって、 プログラムを登録して下さい。

(6) プログラムのアンインストール

水撃圧プログラムをアンインストールするには、次の通りの手順で行って下さい。

Windows7/8.1 では、コントロールパネルを開き、「プログラムと機能」を選択し、インストールされて いるプログラムの一覧から"水撃圧プログラム 2010"を右クリックし「アンインストール」を選択します。 Windows10/11 では、スタートボタンから設定を選択し、設定ウィンドウを開きます。

Windows10 では、「アプリ」を開きます。プログラムの一覧から"水撃圧プログラム 2010"をクリックし 「アンインストール」を選択します。

Windows11 では左側の一覧から「アプリ」を選択し、「アプリと機能」を選択して、アプリの一覧を表

示します。"水撃圧プログラム 2010"の右端に表示される":"を押して「アンインストール」を選択しま

す。

アンインストールしますかという表示がでるので、「はい」を押します。

水撃圧プログラムのアンインストール作業中には、他のアプリと同様の表示に加えて、次の表示が出ま す。

これは、Excel アドインの解除及び計算用ライブラリの登録を解除する処理の表示です。

「Enter キーを押してください」の表示が出たら"Enter"キーを押してください。コマンドプロンプト画面が消えます。

上記アンインストール手順を実行しても Excel のアドインリストが残ったままになります。 アドインリストから削除する場合下記の手順で行って下さい。

Excel を開きます。

次の表示が出ることがあります。

Microsoft Excel	×
🛕 #URZZV&#J</th><th>C:WHydroSystemsW水撃圧プログラム2010_64W水撃圧プログラム2010.xlaが見つかりません。名前が変更されたか、移動や削除が行われた可能性があります。 OK</th></tr></tbody></table>	

「OK」を押して下さい。

「開発」タブから「Excel アドイン」(Excel2013 では「アドイン」)ボタンを押します。 アドインリストから「水撃圧プログラム 2010」を選択します。

アドイン	?	×	9	ĸ	L	м	N	0	Р	0	R	s	т	U
有効なアドイン(<u>A</u>):														
Euro Currency Tools	OK													
○水梨圧プログラム2010 □分析プール	キャンセル													
□ 分析ツール - VBA	參照(<u>B</u>) .													
(and	オートメーション	(<u>U</u>)												
		Micro	soft Exc	el 472 °C:W	HydroSys	tems¥%®	圧プログラム	2010_64	V水學在九	グラム2010	.xla' が見:	っかりません。	リストから剃	× 除しますか?
水撃圧プログラム2010					_		(#U	Y(X)	1113	(N)	_	_		

「アドイン C:¥......が見つかりません。リストから削除しますか?」と表示されます。

「はい(Y)」を選択して、「OK」ボタンを押します。

リストからアドインが削除されますので、Excel を終了して下さい。

2-2 Excel アドインとツールバー

(1) セキュリティの設定

本プログラムは、Excel のアドインという形式で動作させます。

Excelのアドインでは、マクロと呼ばれるプログラムが動作します。**Excel**のワークブックに含まれるマクロは、安全のためセキュリティの設定を行わないと動作しないようになっていますが、<u>アドインのマ</u>クロは、通常の設定では動作します。

Excel を起動して、マクロ動作に関するエラーが表示されたりツールバーが表示されないときは、次の セキュリティ設定を確認して、設定を変更してください。

「開発」タブ、「アドイン」タブを表示させます。標準では非表示状態になっています。
 「ファイル」タブの「オプション」を選択します。
 「Excel のオプション」ウィンドウで「リボンのユーザー設定」を選択します。

「リボンのユーザー設定」の「メインタブ」で「開発」、「アドイン」が表示状態になっていること を確かめます。非表示(チェックマークがはずれた状態)になっている場合には、チェックマークを 付けて表示状態にします。

「OK」ボタンを押して「Excelのオプション」ウィンドウを終了します。

② 「開発」タブの「マクロのセキュリティ」ボタンを押します。

「セキュリティセンター」ウィンドウで、「アドイン」を選択し、すべてのチェックマークを外して ください。

🗶 🛃 10 - (2 - 🖛		Book1 - Microsoft	Excel			
774ル ホーム 挿入	ページ レイアウト 数式	データ 校開 表示 読み	£		a 🕜 🗆 🗊 🖾	
	288 2017 17572 COM 2420774 7542	アカパライ アカパライ マコードの表示 アナイン マコードの表示 アナイン マコードの表示 マード ヨ ダイアログの実行 マード マコード マコー マコー マード マー マード マード マード マード マード マー マー		1/2#-1 1/2/1-1 5/2/1-1 1/2/1		
-	760	コントロール	XML	变更		
A1 + (tx :				*	
A B	セキュリティ センター					P 💌
2	信頼できる発行元	wk /s				
4	保護できる場所	7112				
5	ALERA STATIST	🔲 アプリケーション アドインパタ	対し、信頼できる発行元の署名を必須にす	ත <u>(R</u>)		
6	SEARCH0711-8-13-711	□ 署名されていないアドイン(:関する通知を無効にする (コードは無効な	:ままです)(<u>N</u>)		
1	7142	🔲 すべてのアプリケーション ア	ドインを無効にする (機能が使えなくなる場	合があります)(D)		
9	ActiveX の設定				•	
10	マクロの設定					
11	保護されたビュー					
12	white the second					
14	xy@->//-					
15	外部コンテンツ					
16	ファイル制限機能の設定					
1/	プライバシー オプション					
19						
20						
21						
22						
24						
25						
H + > H Sheet1 / Sheet2 /						
akate i 🔤 i						
						OK キャンセル

(2) ツールバーの表示

【Excel2010/2013/2016 以降】 (2011/8/23 追加)

アドインが組み込まれると「アドイン」タグにリボンが表示されます。

Excel2010

Excel2016

(3) ツールバーボタンの概要

ツールバーボタンの概要を以下に示します。

詳しい説明は、後に示します。

ツールバーボタン	説明
	水撃圧ツール1
ディーダファイル	水撃圧計算のデータファイル(Excel ワークブック)をアド
	インに結びつけ、リストに加えます
	水撃圧計算のデータファイル(Excel ワークブック)のリス
	トです。
	選択したデータファイルが計算、表示の対称となります
	Excel2007/2010/2016 では、画面上長さが短くなるのでフ
	ァイル名が見えませんが、プルダウンすることによりフル
	パスのファイル名が表示されます
ファイルリストのクリア	データファイル一覧リストをすべて削除します
///////////////////////////////////////	
ファイルリストから削除	データファイル一覧リストから現在の選択ファイルを削
	除します
新規データファイル	新しい空のデータファイルをテンプレートから作成しま
	す
	水撃圧ツール 2
計算	データファイル一覧リストで選択されているデータファ
	イルの計算を行い、計算結果ファイルを作成します
読込・縦断図	データファイル一覧リストで選択されているデータファ
	イルの計算結果ファイルから、指定にしたがってデータフ
	ァイルに読み込みます。指定がある場合は、縦断図も作成
	します
	データファイル一覧リストで選択されているデータファ
	イルに読み込まれている計算結果から水位、流量等の時間
	変化グラフを作成します
バルブ*特性	アドインに組み込まれているバルブ特性データを編集し
	ます
閉じる	ツールバーを閉じます
ヘルプ	このマニュアルが表示されます
	マニュアルを表示するためには、Adobe Acrobat Reader が
	必要です
登録	プログラムの登録情報が表示されます
	プログラムが未登録の状態のときには、登録作業を行いま
	す

(4) ツールバーを非表示にする

Excel で他の作業をするときなど、本プログラムのツールバーが表示されているとわずらわしくなりま すので、必要に応じて次のいずれかの方法で非表示にしてください。

【Excel2010 以降の場合】

- ① 「開発」タブの「アドイン」ボタンを押して「アドイン」ウィンドウを開きます。
- ② 「水撃圧プログラム 2010」のチェックマークを外し、「OK」ボタンを押します。

(5) アドインの再起動

【Excel2010/2013/2016 以上の場合】

- ① 「開発」タブの「アドイン」ボタンを押して「アドイン」ウィンドウを開きます。
- ② 「水撃圧プログラム 2010」にチェックマークを付けて、「OK」ボタンを押します。

Excel2013/2016 以上の場合、上記の方法でアドイン登録を行った場合、「アドイン」タブにツールバーが表示されないことがありますので、次のメッセージを表示します。

Microsoft Excel	×
水撃圧プログラムアドイン組み込み 「アドイン」タグにツールドバーが表示されない Excelを終了し、終了後再度Excelを起動して下さ	ときには、 い
	ОК

「アドイン」タブにツールバーが表示されないときは、メッセージにしたがって Excel を終了し、再度 Excel を起動して下さい。表示されている場合は、そのままお使い下さい。(V1.1.5 で追加)

(6) 手作業によるアドイン登録

インストール時にアドインの登録ができなかった場合、次の手順で登録作業を行って下さい。

【Excel2010/2016 以上の場合】 (2011/8/23 追加)

- ① 「開発」タブを選択します。
- ② 「アドイン」ツールボタンを押して、「アドイン」ウィンドウを開きます。
- ③ 「参照」ボタンを押して、インストールフォルダ(通常は C:¥HydroSystems¥水撃圧プログラム 2010) から「水撃圧プログラム 2010.xla」を選択して「OK」ボタンを押します。
- ④ 「アドイン」ウィンドウに「水撃圧プログラム 2010」が追加されます。
- ⑤ アドインウィンドウで「**OK**」ボタンを押します。

2-3 プログラムの登録/登録情報の取得

Excel を起動し、水撃圧プログラムツールバーの「登録」ボタン^{登録}を押します。

登録されていないとき

インストールした状態では、サンプル版になっていますので、次の表示が出ます。

Microsoft Excel	X
20プログラム 登録しないと	ムを登録しますか? 2サンプル版になります
(#1/12)	いいえ(<u>N</u>)

ここで「はい」を押すと、登録作業が始まります。「いいえ」を押すと、サンプル版のままになります。

シリアル番号 ご購入時にメールでお知らせしたシリアル番号(8桁の数字)を入れて 下さい

会社名・組織名 貴社/貴組織の名称を入れて下さい

管理者名 プログラムの管理を行う方の氏名を入れて下さい 管理者名は、なくてもかまいません

ライセンスファイル 「参照」ボタンを押して、ご購入時にメールの添付ファイルでお送り した"SerialNo_nnn.lic"(nnn の部分は番号が入ります)ファイルを指 定して下さい。

「OK」ボタンを押すと、登録が終了します。

登録情報は、インストールフォルダ(通常は、C:¥HydroSystems¥水撃圧プログラム 2010¥)内の UserInfo.txt に保存されます。

登録情報を修正するには、インストールフォルダ内の UserInfo.txt を削除して再度登録して下さい。 登録済みのとき

登録情報が表示されます。64ビット版の場合バージョン番号に「64ビット版」と併記されます。

	Microsoft Excel	バージョン
	水撃圧プログラム2010.xla(V1.1) このプログラムは次の方にライセンスされています Serial No.	シリアル番号
管理者名		会社名·組織名

2-4 ヘルプの表示

水撃圧プログラムツールバーの「ヘルプ」ボタンヘルプを押します。

ヘルプファイルは、このドキュメントを PDF 形式で保存したものです。 表示するには、Adobe AcrobatReader が必要です。

2-5 サンプル版での制限事項

サンプル版の場合次の制限事項があります。

定義できる節点数:5個以内 実行できる水撃圧計算の時間:10分以内

この制限により、5(P.59)のサンプルデータのいくつかは、実行できません。 サンプル版で得られた計算結果を成果品として第三者に提供することはできません。

3 データの作成

3-1 管路のモデル化

計算データを作るに当たって、まず管路網を模式図に表して名前を付けていく必要があります。 模式図は、節点と枝で表します。節点と節点を結ぶものが枝です。枝の両端には、節点がありますが、 流量境界の場合には、枝の片方のみに節点があってもかまいません。

枝は、次のように分けます。

① 管路

同じ管径、管材料で作られ分岐のない区間を一つの枝にします。 分岐や分水がある場合には、枝を分けます。 バルブ、ポンプが含まれる場合には、枝を分けます。

② バルブ

バルブは、長さのない枝として扱います。管路とは別にバルブの前後に節点を設けて扱います。

③ ポンプ

ポンプはバルブと同様に、長さのない枝として扱います。管路とは別にポンプの前後に節点を 設けて扱います。並列ポンプを扱うこともできます。

ポンプの運転は、水槽水位による自動運転、時間変化テーブルによる

- 水槽 水槽は、一つの節点と扱います。
- ⑤ 堰

越流堰は、水槽と水槽を結ぶ枝として扱います。

- ⑥ 空中放流 バルブの吐出口が水中ではなく水面上にある場合に、吐出点と水槽を結ぶ枝として扱います。
- ⑦ 水位境界

バルブの吐出口や水位を一定にする水槽などです。

⑧ 流量境界

管路からの直分岐分水、水槽からの分水など流量を与える枝です。

起点節点は必要ですが、終点節点はなくてもかまいません。

9 短管路

管路では、水撃圧計算のための計算格子がプログラムにより作成されますが、延長の短い管路 では、計算格子を作成できないことがあります。短管路の指定をすれば、摩擦損失のみが計算 され水撃に計算を行いません。分水の接続管など長さが短く水撃の計算を行わなくて良い管路 は、短管路に指定して下さい。

(2011/6/21 追記)

短管路では、水撃圧計算を行えません。やむを得ない場合を除いてできるだけ短管路を避けて 計算時間間隔を小さくして通常管路と扱って下さい。特に、ポンプ、バルブと短管路が接続さ れている場合で、ポンプ停止、バルブ閉鎖を与えた場合、短管路とポンプ、バルブの接続点の 水位が正しく計算されなくなりますので、注意して下さい。 節点、枝には、全て任意の名称を付けます。名称は、重複しない名称であれば、数字、英字、漢字を組 み合わせて自由に決めることができます。

節点名称と枝名称は重複してもかまいません。

枝名称、節点名称を使用してデータ作成したり、計算結果の表示を行います。

3-2 データファイルの概要

(1) データファイルに含まれるワークシート

計算データは全て、Excelのワークシートに作成します。

データとして使用するワークシートは次の通りです。ワークシート名は、変更できません。所定の名前 のワークシートがなければエラーになります。

ワークシート名	内容
計算時間	計算時間間隔、計算時間、出力間隔等を格納します
節点管路	節点と枝の情報を格納します
管路縦断	管路の縦断形状を格納します
境界条件	水位境界、流量境界の情報を格納します
パターン	流量境界、バルブ開度の時間変化を格納します
<u>水槽</u>	水槽の水面積等を格納します
<u>バルブ</u>	バルブの口径、フロートバルブの制御点などを格納します
ポンプ	ポンプの特性、運転状態を与え方などを格納します
出力条件	データファイルに計算結果を読み込む地点名称等を格納します

これらのワークシートは、ツールバーの「新規データファイル」ボタンで自動作成することができます。 Excelを操作してワークシートを追加し、ワークシート名を上記の名称にする方法でも作成できますが、 データの格納位置等を誤りのないようにするためには、「新規データファイル」で作成するか、既存のデ ータファイルをコピーして作成して下さい。

水槽、バルブ、ポンプの各シートは、それらの構造物が存在しない場合には、なくてもかまいません。

以下のワークシートは、	計算結果を読み込んだ	りグラフを作成する	っと自動的に作成されます。
-------------	------------	-----------	---------------

ワークシート名	内容
流量結果	指定した管路内の計算点、枝流量時間変化を格納します
管路動水位結果	指定した管路内の計算点の動水位時間変化をを格納します
節点結果	指定した節点の動水位、水槽水位時間変化を格納します
最高最低	全ての管路の両端における最高水位、最低水位を格納します
縦断結果	指定した管路内の全計算点の最高水位、最低水位を格納します
LGraph	縦断図グラフを格納します
TGraphIndex	時間変化グラフの指定条件を格納します
TGraph	時間変化グラフを格納します

(2) 新規データファイル

- ツールバーの「新規データファイル」ボタン^{新規データファイル}を押して下さい。
- ② データ用のワークシートが新規ブックに作成されます。保存ウィンドウが表示されますので、データファイルの名称、保存場所を指定します。

新しい水撃圧テータ	ワァイル		? 🔀
保存先(<u>I</u>):	🗀 Sample	💌 🕲 - 过 💐 🔀 📰 - ツールロー	
していたいです。 最近使ったドキュメ で デスクトップ マイ ドキュメント マイ ドキュメント マイ コンピュータ	Sample1.xls Sample2.xls Sample3.xls Sample4.xls Sample5.xls Sample6.xls Sample7.xls Sample8.xls	Excel2003ブッグ(*.xls) Excel2007ブッグ(*.xlsx) Excel2007パイナリブック(*.xlsb)	
マイ ネットワーク	ファイル名(<u>N</u>):	~	保存(<u>S</u>)
	ファイルの種類(<u>T</u>):	Excel2003ブック(*.xls)	キャンセル

ファイル名を入力し、ファイルの種類で、.xls、.xlsx、.xlsb のいずれかを選んで下さい。 ファイル名には、拡張子なしの名前を指定します。

新規データファイルは、Excel で新規ワークシートを作成して、水撃圧計算で使用するシートをコピー して作ります。したがって、"Sheet1"などの新規ワークシートに含まれるシートが存在します。これら のシートを使用しないときは、削除して下さい。

(3) ワークシートでのセルの保護

「新規データファイル」ボタンで作成したデータファイルのワークシートは、保護がかけられています。 これは、見出し部などに誤ってデータを入力すること、書式が変更されることを防ぐためです。 保護されたセルに入力を行うと次の表示が出ます。

欄外などデータで使用しない部分に、メモ等を入力したい場合には、

次の手順でワークシートの保護を外して下さい。

「ホーム」タグの「セル」リボン 「書式」ボタンから、「シート保護の解除」を選択

(4) データファイルリストの整理

データファイルリストは、次のボタンで追加、削除ができます。

データファイルボタン

水撃圧計算のデータファイルを読込んで、リストに加えます

ファイルリストのクリア ボタン

データファイル一覧リストをすべて削除します

ファイルリストから削除 ボタン

データファイル一覧リストから現在の選択ファイルを削除します

3-3 データの作成

(1) 計算時間

<計算時間>シート

	A	В
1	計算時間間隔(秒)	0.1
2	計算終了時刻(秒)	600
3	計算中表示間隔(秒)	1
4	ファイル出力間隔(秒)	1
5	最大最小判定	
6	開始時刻(秒)	300
7	終了時刻(秒)	600
8	収束計算	
9	最大反復数	100
10	収束判定	0.00001
11	並列処理	

B1セル

計算時間間隔(秒)

秒単位で計算時間間隔を指定します

下記の説明を併せて見て下さい

B2 セル 計算終了時刻(秒)

計算を何秒間継続するかを指定します

B3 セル 計算中表示間隔(秒)

計算実行時に現在の計算時刻を画面に表示します。表示間隔を指定 します。例えば、1秒にすると、画面には1秒間隔の進行時刻を表示 します

 B4 セル
 ファイル出力間隔(秒)

 計算結果ファイル(拡張子 .rst のファイル)に出力する時間間隔を指定します

- 最大最小判定
 シート<最大最小>に表示するとき、
 水撃圧計算は、初期状態として静止状態から計算することとしています。例えばバルブ閉鎖による水撃圧を計算するとき、静止状態から定常的な流れを作成し、その後でバルブを閉鎖する条件を与えます。
 上記の例では、300秒までが定常流れを作成する計算で、300秒の時点でバルブを閉鎖しています。バルブ閉鎖による水撃圧を見るわけですから、最大最小は、バルブ閉鎖後の計算で求める必要がありますので、300秒から 600秒までの最大最小を求めるように指定しています。
- B6 セル 最大最小を求める範囲の開始時刻(秒)

B7 セル 最大最小を求める範囲の終了時刻(秒)

収束計算	水撃圧計算では、節点の周りの計算を進めるときに、繰り返し計算を
	行います。この計算は、条件により収束が遅くなることがあります。
	収束しない場合には、最大反復数を大きくして試して下さい。
B9セル	最大反復数
	繰り返し計算の繰り返し回数の上限を与えます
B10 セル	収束判定
	繰り返し計算の収束判定数を与えます。10-5 程度の小さい値を入れ
	て下さい
B11 セル	並列処理
	本プログラムでは、コンピュータの CPU が複数コアの場合、複数の
	コアで同時に計算を進める並列処理を行うことができます。
	ここに 0 以外の数を入れると、並列処理を行います。並列処理を行
	うことにより計算時間を短縮できます。
	並列処理は、管路内の計算点の計算に適用します。管路が長いほど並
	列処理の効果が高くなります。
	並列処理の効果は、状況により変わります。複数コアのある場合でも
	並列処理を行うと計算時間が長くなる可能性もあります。

【計算時間間隔について】

本プログラムでは、管路の水撃圧計算を、特性曲線法という計算法で解きます。 特性曲線法は、管路内に一定間隔の計算点を配置して、計算を進めます。 特性曲線法の計算のイメージを図に表すと数のようになります。

図の黒丸の点が、計算点で白丸の点が中間的な計算点です。まず白丸の点の値を求めて、黒丸の点の値 を求めるという2ステップで1計算時間間隔分の計算が行われます。

この図の斜めの線の傾きは、水撃波の伝播速度に等しくなります。

本プログラムでは、管路枝ごとに、与えられた計算時間間隔(Δt)と伝播速度(a)を元にまず、仮の距離間隔(Δx)と分割数(n')を求めます。

 $\Delta x' = \Delta t \times a$ n'=L÷ $\Delta x'$ ここでLは管路枝の長さです。

上式の n'を求める計算は、通常は割り切れないので、n'は整数にはなりません。分割数を整数にしないと管路枝の始点から終点までの計算ができないので、n'を四捨五入して分割数 n を求めます。 計算に使用する距離きざみは Δx=L÷n で求めます。 Δt は変えないので、計算上の伝播速度(a')は、a'= $\Delta x \div \Delta t$ となり、与えた伝播速度と異なる値になります。

本プログラムでは、計算上の伝播速度(a')を使用して水撃圧計算を行います。

本プログラムでは、 $a \ge a'$ に 15%以上の差があるとエラーにして計算を進めません。 $a \ge a'$ の差を小さくするには、 Δt を小さくする必要があります。

(2) 節点·管路

<節点管路>シート

節点データは、A 列~C 列に、管路データ(枝データ)は、D 列~L 列に与えます。管路データには、管路 枝だけでなく、全ての枝(バルブ、ポンプ、堰、境界流量、短管路)を定義します。

【節点データ】

	A	В	С
1		節点	
2			
З		区分	
4		ビカービン・一般などの	
5	夕称	1日たるし、日に日期点 ロッ化位倍男	初期値
6	- ⊡ 177		(m)
7		1.7018	
8			
9			
10	1	В	
11	2		60
12	3		60
13	4		60
14	5		60
15	6		60
16	7		60
17	8		60
18	9		60
19	10		60
20	11	В	
21	11 V		60
22			
23			
24			
25			
26			
27			
28			
29			

データは、10行目から下に入れます。A列が空白の行があると、その前の行がデータの終わりになります。

節点の個数に制限はありません。節点データの順序は、問いません。空間的な配置とは無関係に定義できます。節点を削除した場合には、必ず行を上に詰めて下さい。

A 列	節点の名称です
	節点名には任意の文字が使用できます。重複する名前は使用できま
	せん
B列	管路の分岐点では、何も入れる必要がありません
	水位境界の場合は、B
	水槽の場合は、Tをそれぞれ入れます
C 列	計算の初期値を、標高 m 単位で入れます
	水位境界の場合は、別に境界条件で与えるので必要ありません
	水撃圧計算の初期値は、静止状態とする必要がありますので、境界水
	位等から静水状態を見て決めて下さい

【管路(枝)データ】

データは、10行目から下に入れます。D列が空白の行があると、その前の行がデータの終わりになります。

	D	E	F	G	Н	I	J	K	L	M	N	0
1	管路、バルブ、堰											
2				区分								
3				指定なし:管路	延長(m)	伝播速度(m/s)	流速係数	管径(m)	初期水位(m)			
4		14 -E	66 E	S:短管路	延長(m)	局所ロス	流速係数	管径(m)			1	
5	17 FT	「加只」	総点	V:バルブ	バルブ種類			バルブ設置管管径(m)			明確考える。	計算に用いる
6	- 1 1 fr	即黒	即只	W:堰	堰高標高(m)	堰幅(m)				計算点数	(日本)	伝播速度
7		1011	10 fm	F:空中放流							(m)	(m/s)
8				B:流量境界								
9				P:ポンプ	計画揚程(m)	計画流量(m3/s)						
10	1	1	2		2000	1 0 0 0	130	0.8	60	21	100	1 000
11	2	2	3		2000	1 0 0 0	130	0.8	60	21	100	1 000
12	3	3	4		2000	1000	130	0.8	60	21	100	1 0 0 0
13	4	4	5		2000	1000	130	0.8	60	21	100	1 0 0 0
14	5	5	6		2000	1000	130	0.8	60	21	100	1 000
15	6	6	7		2000	1000	130	0.8	60	21	100	1 0 0 0
16	7	7	8		2000	1000	130	0.8	60	21	100	1 0 0 0
17	8	8	9		2000	1000	130	0.8	60	21	100	1 0 0 0
18	9	9	10		2000	1 0 0 0	130	0.8	60	21	100	1 000
19	10	10	11 V		2000	1000	130	0.8	60	21	100	1 000
20	V	11 V	11	V	В			0.8				
21	B2	2		В								
22	B3	3		В								
23	B4	4		В								
24	B5	5		В								
25	B6	6		В								
26	B7	7		В								
27	B8	8		В								
28	B9	9		В								
29												
30												

枝データの順序は、問いません。空間的な配置とは無関係に定義できます。枝を削除した場合には、必 ず行を上に詰めて下さい。

D列	枝の名称です
	枝名には任意の文字が使用できます。重複する名前は使用できませ
	\mathcal{N}
E 列	始点節点名称
F 列	終点節点名称
	流量境界の場合には、終点節点を指定しなくてもかまいません
	流量は、始点から終点に向かって正の値になります
G 列	枝の種類
	管路の場合 何も入れる必要がありません
	短管路の場合 S
	バルブの場合 V
	堰の場合 W
	空中放流の場合 F
	ポンプの場合 P
	をそれぞれ入れます
H列以降は枝の種類に。	より入れる内容が異なります。

【管路の場合】

H列	管路の延長 (m)
列	圧力波伝播速度(m/s) 下の注釈を参照して下さい
J列	流速係数 摩擦損失をヘーゼン・ウィリアムス式で計算しますので、
	ヘーゼン・ウィリアムス式の流速係数を入れます
K 列	管径 (m)
L列	管路内部の計算点初期水位 (標高 m)
-------------	--
	両端の節点初期水位から決めて下さい
管路の場合、計算を実行	テすると M 列から右に次の値が書き込まれます
M 列	計算点数 両端を含む管路枝の計算点数です
N 列	計算点の距離間隔(m)です
O列	計算時間間隔と距離間隔から決まる計算上の伝播速度(m/s)です
【短管路の場合】	
H列	管路の延長 (m)
列	局所ロス
	摩擦損失以外の局所水頭損失がある場合には、損失係数(f)の値で与
	えます
J列	流速係数 摩擦損失をヘーゼン・ウィリアムス式で計算しますので、
	ヘーゼン・ウィリアムス式の流速係数を入れます
K列	管径 (m)
【バルブの場合】	
H列	バルブの種類、 <u>バルブ特性ファイル(</u> Vlalve.xls)で与えられたバルブ
	特性の名称
K列	バルブ設置管の管径 (m)
【堰の場合】	

H列 堰頂の標高 (m)Ⅰ列 堰幅(m)

【空中放流の場合】

バルブの吐出口が水中ではなく水面上にある場合に、吐出点と水槽を結ぶ枝として扱います。 H列以降のデータは必要ありません。

【ポンプの場合】

H列	計画(定格)揚程	(m)
列	計画(定格)流量	(m³/s)

【圧力波伝播速度】

管路の圧力波伝播速度は、水の圧縮性と管の変形によって決まります。 一般的には、次式で表されます。¹

$$a = \frac{1}{\sqrt{\frac{w_0}{g} \left(\frac{1}{K} + \frac{DC_1}{Et}\right)}}$$

a: 圧力波の伝播速度(m/s)、E:管材のヤング係数(kN/m²)、g:重力加速度(9.8m/s²) K:水の体積弾性係数(2.03×10⁶kN/m²)、D:管の内径(m)、w0:水の単位体積重量(9.81kN/m³) t:管厚(m)、C1:管の埋設状況による係数(1.0を基準とする)

管材のヤング係数の参考値は、以下の通りです。

管種	ヤング係数 E (×10 ⁶ kN/m²)
鋼管	200
ダクタイル鋳鉄管	160
遠心力鉄筋コンクリート管	20
コア式プレストレストコンクリート管	39
硬質ポリ塩化ビニール管	3
一般用ポリエチレン管	1
水道配水用ポリエチレン管	1.3
強化プラスティック管	15~22 ^注

管材のヤング係数 E (×10⁶kN/m²)²

注 FW 成型の 5~1 種管の値を示す。管級や用途、成形方法により本表以外の値の場合もある

2012/10/12 追加

付属ファイル"伝播速度.xls"に上式による伝播速度を計算する Excel シートの例があります。

	А	В	С	D	E	F	G	Н	I	J	К	L	м	N	0	P	Q
1	管種	ヤング 係数 (×10 ⁵ kN/m ²)	管厚(m)	内径(m)	伝播速度 (m/s)			1									
2	ダクタイル铸鉄管	160	0.0075	0.6	1,004	a	$=\frac{1}{\sqrt{\mathbf{w}_0}}$	$\frac{1}{\left(\frac{1}{T}+\frac{1}{T}\right)}$	$\overline{\mathbf{DC}_1}$								
3							V g	(K	Et /								
4	管裡	ヤング係数	<u>E (×10°kN</u>	/m²)													
5	鋼管			200	<u>۴</u>		-		- <u>AT 1 1 -</u>	1	2	<u> </u>	ر محمد محد در با	0.0 (2)			
6	ダクタイル铸鉄管			160	а	: 圧刀波(の伝播速度	€(m/s)、E	:管材の	ヤンク係	窽(kN/m⁻)	、g:重フ	リ加速度(9.8m/s*)			
7	遠心力鉄筋コンクリート管			20		. + n+		6/2 02 V	0 ⁶ LNI (m2)	D. 45	n rts/2 (m)		~)H (H (H		041-01/003	, I	
0	コマギザ・フトレフトコンクリート管			30		: /////44/	ITTT:	民(Z.03×1	0 KN/m)		シャル全(11)	、 WU : //	の単1近14	-傾里里(9.	OTKIN/III) የ	
0							C1 . 55	man and the	HIFEXI	#++/1 0 +		- 7 \				-	
9	「使見小り温化ビニール」官			3		官厚(m)		の理試状	エルー つい	希宏(1.0 含	金増とり	ବ)				Ļ	
10	一般用ホリエナレン官			1	~						~						
11	水道配水用ポリエチレン管			1.3													
12	強化プラスティック管			15~22	注 FW成型の)5~1種管(D値を示す。	管級や用途	、成形方法	こより本表比	以外の値の場	言もある					
13																	

水色のセルに値を入れることにより伝播速度が求められます。適宜ご利用ください。

2 同上

 ¹ 農林水産省農村振興局整備部設計課 監修(2009):「土地改良事業計画設計基準及び運用・解説」
 設計 「パイプライン」 付録技術書 平成 21 年 3 月 (社)農業農村工学会 発行

(3) 管路縦断

<管路縦断>シート

2012/10/12 修正 静水位の指定が可能になりました。

管路の縦断形状と静水位を与えます。データは、3行目から下に入れます。A列が空白の行があると、 その前の行がデータの終わりになります。

縦断は、管路枝、短管路枝について与えることができます。

縦断は、水撃圧計算には関係しません。縦断結果の表示、縦断図の表示のみに関係します。

水撃圧が管軸上圧力で-10m を下回ると管内の空気が分離し水柱分離が発生しますが、本プログラムの 計算では不圧の下限はチェックしません。

出力の縦断結果を見て判定して下さい。

A 列	管路の名称
	<u><節点管路>シート</u> にいれた管路枝、短管路枝の名称
B 列	縦断を与える点の距離、追加距離で与えることもできます
	上図では、管路1は管路内距離で、管路2から10は管路2の始点か
	らの追加距離で与えています
	直前の距離より大きな値のときには追加距離、値が小さくなったと
	きには、その管路の始点からの距離と判断します
	枝分かれしている場合には、分岐点から距離を振り直して与えて下
	さい
C 列	管軸標高(m) その地点の管軸標高です
D 列	静水位を標高 m 単位で入れます。
	静水位は一つの管路枝で 1 種類しか与えることはできません。一つ
	の管路枝で異なる値があった場合には、後の方の値が採用されます。
	静水位が不明の場合など、指定しないこともできます。静水位を指定
	しない場合には、何も入れないで下さい。この場合、<縦断結果>シ

ートで、静水位に関する出力はされません。

バージョン 1.1.3 以前のプログラムで作成したデータや、例題では、D 列が保護されて入力できないようになっている場合があります。D 列の保護は、次の手順で手順で解除できます。

【Excel2003の場合】メニュー「ツール」、「シート保護の解除」を選択して下さい。

【Excel2007/2010 の場合】「ホーム」タブの「書式」ボタンを押して、「シート保護の解除」を選択して下さい。

上の例で、追加距離 2000m までは管路 1 ですが、この地点から管路 2 が始まるので管路名称を 2 にしています。

(4) 境界条件

<境界条件>シート、<パターン>シート

<境界条件>シートでは、流量境界、水位境界と時間変化パターンを与える<パターン>シートと対応 を定義します。

流量境界は、A列、B列に、水位境界はC列、D列に与えます。

データは、3行目から下に入れます。A列が空白の行があると、その前の行がデータの終わりになります。

流量境界枝の名称
<u><節点管路>シート</u> にいれた流量境界枝の名称
<パターン>シートのパターン名称
複数の流量境界に同じ時刻変化パターンを利用することもできます
水位境界点の名称
<u><節点管路>シート</u> にいれた水位境界節点の名称
<パターン>シートのパターン名称

(5) 時間変化パターン

<パターン>シートでは、2列単位に時刻と値を与え時間変化テーブルを定義します。

2 列ごとの左側の列1行目が、時刻変化パターン名称です。時刻変化パターン名が空白の場合、その列 の左側の列までが有効なデータです。

データは、3行目から下に入れます。A列が空白の行があると、その前の行がデータの終わりになります。

<パターン>シートには、流量境界、水位境界の時刻変化だけでなく、バルブ開度の時刻変化、ポンプ 運転の時刻変化でも利用します。

上図例の時刻変化パターン"V1"は、バルブ開度の変化です。

左側の列	時刻変化パターンの開	時刻の値(秒)			
右側の列	当該時刻における値	流量境界では、	m³/s、	水位境界では	標高m
	バルブの開度の場合)~1 の値			

計算時間全体を通して一定の値にするときには、時刻0の値のみ入れて下さい。通常水位境界では、一 定値になります。計算時刻が、時刻変化パターンで与えられた最後の時刻を過ぎたときには、最後の時 刻の値が継続しているものとします。

上図例のパターン"V1"は次の時刻変化を表します。

上図の例で、時刻変化パターン"B"では、60 秒経過後は、終わりまで 0.05 となります。

2012/7/5 追加

<パターン>シートでのベジエ曲線補間

バルブ開度を与えるときに、バルブ開度の直線変化だけを使用すると、開度変化が激しすぎて大きな水 撃圧が発生する可能性があります。

バルブの種類によっては、バルブ全閉直前の開度変化を緩やかにして、水撃の発生を防ぐ機構が備わっ ている場合があります。こうした緩閉塞の動きは、パターンデータの時刻点を細かく与えることによっ ても実現できますが、緩閉塞のデータを与えるには、データの量が多くなりすぎるので、より簡単に緩 閉塞の動きを与えられるように、ベジエ曲線による補間法が使用できます。

ベジエ曲線補間を行う場合には、<パターン>シートの時刻を入れる列で、補間を行いたい時刻の間の 行に**"#B**"と入れます。上図の例では、時刻 300 秒から 360 秒の間を補間します。

#Bの右側のセルには、カンマで区切って **3** 個のパラメータを入れます。パラメータの内容は、後で説明します。

ベジエ曲線補間は、バルブ開度だけでなく水位境界、流量境界、ポンプの運転でも使用できます。

ベジエ曲線は、始点、終点と2個の制御点を使用して、3次式で表される曲線を求めて補間を行う方法 です。滑らかな補間が可能になります。始点と終点は決まっていますが、制御点をどこに置くかによっ て曲線の形は変わってきます。

本プログラムでは、次の基準で制御点を決めます。

- 始点より前の時刻にパターンが定義されている場合は、始点直前の傾きを延長した直線上に制御点 を置きます。始点より前にパターンが定義されていない場合は、始点側制御点の値(上図の縦座標値) は始点と同じにします。
- ② 終点以後に時刻にパターンが定義されている場合は、終点直後の傾きを延長した直線上に制御点を 置きます。終点以後にパターンが定義されていない場合は、終点側制御点の値(上図の縦座標値)は 終点と同じにします。
- ③ (始点~制御点時間間隔)÷(始点~終点時間間隔)の値は、0≦,≦1.0 でパラメータとして与えます。
 同様に(制御点~終点時間間隔)÷(始点~終点時間間隔)の値もパラメータで与えます。

本プログラムでは、ベジエ補間曲線上に補間点を配置して折線を定義し、計算中は折線の使用します。 補間点のを配置する間隔は、0<,≦0.5 でパラメータとして与えます。補間点の間隔を細かくするほど 曲線に近くなります。

ベジエ曲線作成のパラメータは、**"#B**"を指定したセルの右隣セルにカンマ(,)で区切って次の順序で与えます。

ベ	ベジエ曲線補間のパラメータ							
\bigcirc	(始点~制御点時間間隔)÷(始点~終点時間間隔)の値	始点制御点位置						
2	(制御点~終点時間間隔)÷(始点~終点時間間隔)の値	終点制御点位置						
3	補間点間隔							

バルブの開度変化で緩閉塞を与える場合には、上図の中央のように始点制御点位置を0にして与えるの が自然な動きになります。

始点制御点位置、終点制御点位置の値を1に近い値まで大きくすると、上図の右の例のように中間で変 化が激しくなります。

始点の前、終点の後の変化パターンに傾きがあると、上図の中央のように補間曲線は波を打ったように 外側にはみ出します。

補間点間隔を粗くすると上図の右の例のように、補間線は滑らかさがなくなります。

ベジエ曲線補間をバルブ開度に使用する場合、あくまでバルブの緩閉塞などを近似的に表す手段と理解 して下さい。実際には、バルブメーカ等から開度時間変化を入手して実際の動きに応じて使用するよう にして下さい。緩閉塞ができないバルブで使用すると水撃圧を過小に評価してしまう可能性があります ので注意して下さい。

(6) 水槽

<水槽>シート

	A	В	С	D
1	節点名称	水面積	底標高	
2		m²	m	
3	3	20	0	
4				
5				
6				
7				

A列

水槽の節点名称

<<u><節点管路>シート</u>で水槽と定義された節点の名称

B列	水槽の底面積	(m ²)
		· · ·

C列 水槽の底標高 (標高 m)

(7) バルブ

<バルブ>シート

データは、3行目から下に入れます。A列が空白の行があると、その前の行がデータの終わりになります。

		A	В	С	D	E	F	G	Н
	1				時間変化を与える弁	水槽フロ	ートで操作	する弁	
	2	バルブ名称	口径(m)	局所ロス	時間変化バターン	水槽名称	最高水位	最低水位	
	3	v	0.8	1		3	12	9	
	4								
1	-								

	A	В	С	D	E	F	G	Н
1				時間変化を与える弁	水槽フロートで操作する弁			
2	バルブ名称	口径(m)	局所ロス	時間変化バターン	水槽名称	最高水位	最低水位	
3	V	0.8	1	V1				
4								

A列 バルブ枝の名称

<u><節点管路>シート</u>でバルブと定義された枝の名称

B列 バルブロ径(m)

C列 バルブ全開時の局所ロス、損失係数(f)の値で与えます

バルブ開度変化を時間変化テーブルで与える場合には、D列を使用します。

水槽フロートで操作される場合には、E列~G列を使用します。

D列 バルブ開度を与える時間変化テーブルの名称

バルブ開度は、0以上1以下の小数値で与えて下さい

- **E**列 フロートが設置される水槽の節点名称
- F列 最高水位 水槽水位がこの水位以上でバルブは全閉します

G列 最低水位 水槽水位がこの水位以下でバルブは全開します

水槽水位が最低水位と最高水位の中間にある場合には、バルブ開度は中間開度になります。

(8) ポンプ

<ポンプ>シート

データは、3行目から下に入れます。A列が空白の行があると、その前の行がデータの終わりになります。

	A	В	С	D	E	F	G	Н			
1		ボンブ		自動制御							
			制御バターン名								
2	設置管路	最大揚程比率	なしのとき自動	水槽名称	停止水位(m)	起動水位(m)	始動時間(秒)	停止時間(秒)			
3	1A	1.2		3	32	28	30	60			
4	1 B	1.2		3	31.5	27.5	30	60			
5											
6											

ポンプは、次の式で特性を表します。

 $\frac{\mathrm{H}}{\mathrm{H}_{\mathrm{p}}} = \mathrm{a} \left(\frac{\mathrm{Q}}{\mathrm{Q}_{\mathrm{p}}}\right)^{2} + \mathrm{c} \left(\frac{\mathrm{N}}{\mathrm{N}_{\mathrm{p}}}\right)^{2}$

ここで、 H: 揚程、H_p: 定格揚程、Q: 流量、Q_p: 定格流量、N/N_p: 回転数の比率

a、c:定数

定格運転時には、Q=Qp、H=Hp、N/Np=1 ですから、上式は 1=a+c となるので、a=1-c となります。 上式を書き直すと、

$$\frac{\mathrm{H}}{\mathrm{H}_{\mathrm{p}}} = \left(1 - c\right) \left(\frac{\mathrm{Q}}{\mathrm{Q}_{\mathrm{p}}}\right)^{2} + c \left(\frac{\mathrm{N}}{\mathrm{N}_{\mathrm{p}}}\right)^{2} \quad \text{ext} \text{ is } \text{f.}$$

Q=0、N=Npのとき、**H=CH**pとなるから、c は定格揚程に対する最大揚程の比率であることがわかります。

A 列	ポンプ枝の名称
	<u><節点管路>シート</u> でポンプと定義された枝の名称
B 列	最大揚程比率、上式のcの値
C 列	ポンプの運転を時間変化テーブルで与えるとき<パターン>シート
	の時刻変化テーブル名をいれます

ポンプを自動運転とする場合は、何もいれません

ポンプの時間変化は、回転数の比率 N/Np で与えます

ポンプを水槽水位による自動オンオフ運転とする場合には、D列以降に指定します

- D列 ポンプを制御する水槽節点名
- E列 ポンプにオフ(停止)を指示する水位
- この水位以上のときポンプに停止信号が送られます
- F列 ポンプオン(起動)を指示する水位
- この水位以下のときポンプに起動信号が送られます
- G列 始動時間(秒)

ポンプに起動信号が送られてからフル運転(N/N_p=1)になるまでの時間、この時間が経過するまで N/N_p が直線的に変化するものとして計算します

- H列 停止時間(秒)
 - ポンプに停止信号が送られてから停止(N/Np=0)になるまでの時間、

この時間が経過するまで N/Npが直線的に変化するものとして計算します

(9) 出力条件

<出力条件>シート

	A	В	С	D	E		F	(G	H
1				作表地点	į.					
2	開始時刻(秒)	0								
З	終了時刻(秒)	3600								
4	流重		動水	位	節点水位		縦断	íØ		
5	管路名称	計算点	管路名称	計算点	節点名称	縦断	図名称	管路	名称	
6	1	E	1	E	1	1				
7	2	E	3	E	2			1		
8	3	E			3			3		
9	B1				4					
10	B4									
11										
	A			U			- F		G	
	日日カムロキナルノチル	3		作衣	也只					
$\frac{2}{2}$	開始時刻秒	0 0	0							
3	終了時刻的	<u>// 180</u>	<u>00</u>	H_L/H	** - E -	1.14		SHARE IN	ה	
4	川	<u>니뽀</u> ㅣ 라쓤ㅗ		<u> 비가지요</u> 도 === 현		<u> 不知</u> 夕좌 ()		<u>靴町区</u> 4年	් ජාතානක්	*
	官哈石朴					6孙 ;	微断凶石	不小	1816-61	ф
	1	E	1	E	2	1				
	2	E	2	E	6			1		
8	3	E	3	E	10			2		
9	4		4	E				3		
			0					0		
			7			0		11		
			/			2		-		
			0					1		
12	9		9	E				4		
	10	E	10	E				9		
10	11	E	11	E				12	<u></u>	
	12	E	12	E				13	j	
18	13	E	13	E						
118	14									

水撃圧計算結果は、

<hr/>
<

B2 セル 時間変化計算結果を表示する開始時刻(秒)

B3 セル 時間変化計算結果を表示する終了時刻(秒)

A列~E列で時間変化表示地点を指定します。 データは、3行目から下に入れます。空白の行があると、 その前の行がデータの終わりになります。

A列、B列は流量時間変化表示地点の指定です。

<流量結果>シートに出力されます。

A列 時間変化を表示する管路枝の名称、または短管路、バルブ、ポンプ、堰、流量境界の各枝名称

B列
 A列に指定した枝が管路とき、管路内の計算点の番号を指定します
 計算点番号は、始点を0として振られます。
 終点を出力したいときは、Eと入れて下さい

C列、D列は動水位時間変化表示地点の指定です。

<管路動水位結果>シートに出力されます。

時間変化を表示する管路枝の名称です

短管路、バルブ、ポンプ、堰、流量境界の各枝は管路内に計算点を持 たないため指定できません

D列 C列に指定した管路の、管路内の計算点番号を指定します

計算点番号は、始点を0として振られます。

終点を出力したいときは、**E**と入れて下さい

始点または終点の動水位は、始点節点、終点節点の動水位と同じです E列は節点動水位時間変化表示地点の指定です。

<節点結果>シートに出力されます。

E列 時間変化を表示する節点の名称です

管路節点、水槽いずれも出力可能です

F列、G列は縦断結果出力、縦断図の指定です。

縦断結果出力は、<縦断結果>シートに作成されます。

<縦断結果>シートには、<計算時間>シートで指定した、最大最小判定開始時刻から終了時刻までの 期間で求めた最大と、最小値が、全ての計算点及び<u><管路縦断>シート</u>で指定された勾配変化点につい て、次の項目が出力されます。

最大動水位(標高 m)、最小動水位(標高 m)、管軸標高(標高 m)

最大圧力水頭(m)、最小圧力水頭(m)、最大動水圧(MPa)、最小動水圧(MPa)

静水位(標高 m)、静水頭(m)、静水圧(MPa)、静水圧上最大水頭(m)、静水圧上最大動水圧(MPa)

<管路縦断>シートで静水位が与えられていない場合、静水位以下の項目は出力されません。 縦断図(縦断グラフ)は、<縦断結果>シートのセルを参照して、<LGraph>シートに出力されます。

F 列

縦断図の名称を入れます

名称は、図の見出しに表示される任意の文字列です

E列

C列

縦断図に含まれる管路枝、短管路枝の名称を順に指定します

縦断図が複数になる場合には、G列の指定が終わった次の行のF列 に次の縦断図名称を入れます。

上の例では、縦断図「1」に管路 1,2,3,6,11 を、縦断図「2」に 1,4,9,12,13 をつなげて表示するように与えています。

V1.1 で短管路を含められるようになりました。

V1.1.4 で出力項目を追加しました。

3-4 計算の実行

ツールバーの計算ボタン^{計算}を押すと、データファイルリストで選択されているデータファイルの計算 が開始されます。

計算実行中は、次の計算中ウィンドウが表示されます。ここに表示される時刻は、時:分:秒で、<計算時間>シートの計算中表示間隔にしたがって更新されます。

計算中	<
00 : 49 : 56.0000	
中止	

中止ボタンを押すと、計算が途中で中止されます。次のウィンドウが表示されます。「はい」を押すと計 算が中止され、「いいえ」を押すと計算が継続します。

計算が終了すると、計算中ウィンドウが消えます。

(2017/1 追記)

終了後 Excel を閉じたとき、バルブ特性ファイル Valve.xlsx に変更を加えていないのに、Valve.xlsx を 保存するかというメッセージが表示される場合があります。このときには「はい」を押して保存するよ うにしてください。Excel のバージョンの違い等によるメッセージと考えられます。

3-5 結果の表示

(1) 表出力・縦断図

計算終了後、ツールバーの「読込・縦断図」ボタン^{読込・縦断図}を押すと、<u><出力条件>シート</u>に指定した条件に従って、データファイルに計算結果が読み込まれます。

<最高最低>シートは、<出力条件>シートの指定にかかわらず常に作成されます。

<u><計算時間>シート</u>で縦断図が指定されている場合、縦断図グラフが<LGraph>シートに作成されます。

計算が終了した状態で、<u><出力条件>シート</u>の内容を変更し、他のデータを変更していない場合には、 計算をやり直すことなく、「読込・縦断図」ボタンを押すだけで出力が可能です。

データを変更した場合には、計算結果は前に計算したときの状態が残されていますので、変更したデー タではなく、変更前の計算結果になっています。計算をやり直すことなく、「読込・縦断図」 ボタンを押 すとデータと異なる計算結果を読み込むことになりますので注意して下さい。

<流量結果>、<管路動水位結果>、<節点結果>シートの出力

流量結果

	A	В	С	D	Е	F	G	Н	Ι	J	К	L	M
1	時刻	管路(1)-E	管路(2)-E	管路(3)-E	管路(4)-E	管路(5)-E	管路(6)-E	管路(7)-E	管路(8)-E	管路(9)-E	管路(10)-E	バルブ(V)	
2	00:00:00.0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
3	00:00:01.0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.026	0.026	
4	00:00:02.0	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.000	0.049	0.049	
5	00:00:03.0	0.002	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.025	0.069	0.069	
6	00:00:04.0	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.001	0.048	0.087	0.087	
7	00:00:05.0	0.004	0.002	0.002	0.002	0.002	0.002	0.002	0.026	0.067	0.1.03	0.1.03	

管路動水位結果

	A	В	С	D	E	F	G	н	Ι	J	к	L
1	時刻	管路(1)-E	管路(2)-E	管路(3)-E	管路(4)-E	管路(5)-E	管路(6)-E	管路(7)-E	管路(8)-E	管路(9)-E	管路(10)-E	
2	00:00:00.0	60.000	60.000	60.000	60.000	60.000	60.000	60.000	60.000	60.000	60.000	
3	00:00:01.0	59.915	59.915	59.915	59.915	59.915	59.915	59.915	59.915	60.000	54.765	
4	00:00:02.0	59.831	59.831	59.831	59.831	59.831	59.831	59.831	59.831	60.000	50.087	
5	00:00:03.0	59.662	59.577	59.577	59.577	59.577	59.577	59.577	59.662	54.684	45.918	
6	00:00:04.0	59.492	59.323	59.323	59.323	59.323	59.323	59.323	59.492	49.933	42.207	
7	00:00:05.0	59.323	58.985	58.900	58.900	58.900	58.900	58.985	54.012	45.607	38.785	
8	00:00:06:0	59154	58 647	58 477	58 477	58 477	58 477	58 647	49 099	41 742	35 751	

節点結果

	A	В	С	D	E
1	時刻	節点(2)	節点(5)	節点(11V)	
2	00:00:00.0	60.000	60.000	60.000	
3	00:00:01.0	59.915	59.915	54.765	
4	00:00:02.0	59.831	59.831	50.087	
5	00:00:03.0	59.662	59.577	45.918	
6	00:00:04.0	59.492	59.323	42.207	

各シートの1列目は、時:分:秒の時刻です。<計算時間>シートのファイル出力間隔に応じて出力されます。

1 行目は、枝種類(枝名)-計算点の表記で出力地点を示します。計算点が"E"と表記される場合は、管路 枝の終点を示します。

単位は、流量 m³/s、動水位 標高 m、節点水位 標高 m です。

	A	В	С	D	E	F	G	Н	I
1		上流側最大	大動水位	下流側最大	大動水位	上流側最小	、動水位	下流側最小	、動水位
2	節点/管路	発生時刻	動水位	発生時刻	動水位	発生時刻	動水位	発生時刻	動水位
3	節点[2]	00:11:36	101.745			00:11:56	80.670		
4	節点[3]	00:11:35	112.255			00:11:54	72.799		
5	節点[4]	00:11:37	119.191			00:11:56	66.145		
6	節点[5]	00:11:39	124.736			00:11:58	58.421		
7	節点[6]	00:11:40	131.679			00:12:04	49.854		
8	節点[7]	00:11:38	136.885			00:12:03	38.502		
9	節点[8]	00:11:36	143.289			00:12:05	22.506		
10	節点[9]	00:11:34	148.388			00:12:05	15.981		
11	節点[10]	00:11:32	158.105			00:12:03	13.226		
12	節点[11∨]	00:11:30	166.432			00:12:01	10.215		
13	管路[1]	00:10:00	90.000	00:11:36	101.745	00:10:00	90.000	00:11:56	80.670
14	管路[2]	00:11:36	101.745	00:11:35	112.255	00:11:56	80.670	00:11:54	72.799
15	管路[3]	00:11:35	112.255	00:11:37	119.191	00:11:54	72.799	00:11:56	66.145
16	管路[4]	00:11:37	119.191	00:11:39	124.736	00:11:56	66.145	00:11:58	58.421
17	管路[5]	00:11:39	124.736	00:11:40	131.679	00:11:58	58.421	00:12:04	49.854
18	管路[6]	00:11:40	131.679	00:11:38	136.885	00:12:04	49.854	00:12:03	38.502
19	管路[7]	00:11:38	136.885	00:11:36	143.289	00:12:03	38.502	00:12:05	22.506
20	管路[8]	00:11:36	143.289	00:11:34	148.388	00:12:05	22.506	00:12:05	15.981
21	管路[9]	00:11:34	148.388	00:11:32	158.105	00:12:05	15.981	00:12:03	13.226
22	管路[10]	00:11:32	158.105	00:11:30	166.432	00:12:03	13.226	00:12:01	10.215

全ての管路節点の動水位最大値、最小値、及び全ての管路枝について上流端と下流端の動水位最大値、 最小値とその発生時刻を出力します。

ここに表示される最大値、最小値は、計算プログラムの中で計算時間間隔全ての時刻で判定したもので す。上の時間変化出力から求めた最大値、最小値と異なる場合があります。ここでの出力は、ファイル 出力間隔の間の時刻に発生した値でも表示します。正しい最大値、最小値はここの出力または次の縦断 結果を見て下さい。

最大最小の判定は、<計算時間>シートの最大最小判定 開始時刻、終了時刻の間で行われます。 V1.1 で管路節点の出力を追加しました

<縦断結果>シートの出力

	A	В	С	D	E	F	G	Н	Ι	J	K	L	M	N	0	P
								幹線縦断								
1								(a)-(b)								#3-k 🖂 I
			管路内距	追加距離	最大動水	最小動水	管軸標高	最大圧力	最小圧力	最大動	水 最小動	ド静水位	静水頭	静水压	静水圧上	 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一
	管路	計算点	離	(m)	位	位	(標高m)	水頭	水頭	4.0	E J	E (標高m)	(m)	(MPa)	最大水頭	圧
2			(m)		(振向m)	(惊向m)		(m)	(m)	UMP	a) (MP	a)			(m)	(MPa)
3	а	0	0.000	0.000	30.000	30.000	20.000	10.000	10.000	0.0980	0.0980	0 30.000	10.000	0.09800	0.000	0.00000
4	а	1	/6.923	/6.925	31,835	29.064	19.231	12.605	9.833	0.1235	0.0965	7 30.000	10.769	0.10554	1.835	0.01799
2 6	a -	2	230 769	230 760	33.009	28.175	17.692	17.806	9.713	0.1490	50 0.0951	9 30.000	12 308	0.11308	5.009	0.05388
7	a	4	307 692	307 692	37 319	26.544	16.923	20.395	9.621	0 1998	38 0.0942	8 30,000	13.077	0.12002	7 319	0.00000
8	a	5	384.615	384.615	39.131	26.072	16.154	22.977	9.918	0.225	0.0971	9 30.000	13.846	0.13569	9.131	0.08948
9	а	6	461.538	461.538	40.931	25.534	15.385	25.547	10.149	0.2503	36 0.0994	6 30.000	14.615	0.14323	10.931	0.10713
10	а	7	538.462	538.462	42.721	24.790	14.615	28.106	10.174	0.2754	44 0.0997	1 30.000	15.385	0.15077	12.721	0.12467
11	а	8	615.385	615.385	44.500	24.045	13.846	30.654	10.199	0.3004	41 0.0999	5 30.000	16.154	0.15831	14.500	0.14210
12	a –	10	692.308	692.305	46.266	23.301	13.077	33.189 05.711	10.224	0.3252	25 0.1002	0 30.000	16.923	0.16585	16.266	0.15941
14	a	11	846 154	846 154	40.019	21.813	11.538	38,220	10.249	0.3499	56 0.1004	9 30.000	18 462	0.17030	19,759	0 19364
15	а	12	923.077	923.077	51.483	21.068	10.769	40.714	10.299	0.3990	0.1009	3 30.000	19.231	0.18846	21.483	0.21054
16	а	13	1000.000	1000.000	53.179	20.324	10.000	43.179	10.324	0.423	15 0.1011	7 30.000	20.000	0.19600	23.179	0.22715
17	ь	0	0.000	1000.000	53.179	20.324	10.000	43.179	10.324	0.423	15 0.1011	7 30.000	20.000	0.19600	23.179	0.22715
18	b	1	76.923	1076.923	54.840	19.580	9.231	45.609	10.349	0.4469	97 0.1014	2 30.000	20.769	0.20354	24.840	0.24343
19	b	2	153.846	1153.846	56.465	18.835	8.462	48.004	10.374	0.4704	4 0.1016	6 30.000	21.538	0.21108	26.465	0.25936
20	b b	3	230.769	1230.769	58.052	17.947	6.022	50.359	10.399	0.4935	0.1019	5 20.000	22.308	0.22615	28.052	0.27491
22	h	5	384.615	1384 615	61 139	16.602	6 154	54 985	10.424	0.5388	36 0.1024	0 30,000	23.846	0.22010	31 139	0.30516
23	Ь	6	461.538	1461.538	62.618	15.858	5,385	57.233	10.474	0.5608	0.1026	4 30.000	24.615	0.24123	32.618	0.31966
24	ь	7	538.462	1538.462	64.051	15.114	4.615	59.435	10.499	0.5824	47 0.1028	9 30.000	25.385	0.24877	34.051	0.33370
25	Ь	8	615.385	1615.385	65.436	14.370	3.846	61.590	10.524	0.6035	58 0.1031	3 30.000	26.154	0.25631	35.436	0.34727
26	Ь	9	692.308	1692.308	66.772	13.625	3.077	63.695	10.548	0.6242	21 0.1033	7 30.000	26.923	0.26385	36.772	0.36037
27	b	10	769.231	1769.231	68.059	12.881	2.308	65.751	10.573	0.6443	36 0.1036	2 30.000	27.692	0.27138	38.059	0.37297
28	D L	10	840.154	1846.154	09.295	11 202	1.538	60.711	10.598	0.6692	0.1036	1 20.000	28.462	0.27892	39.295	0.38509
30	h	13	1000.000	2000.000	71.614	10.648	0.709	71.614	10.648	0.003	10 0.1041	5 30,000	30.000	0.28040	40.480	0.39070
	- Δ		B (2	DE	F	G	н	I		J		M	N	0	P
	(F-		·	<u> </u>				幹線縦断		I						
1	一起	官路0	り场合				(s	1)-(a)-(s1-2)	-(ь)							+2 1.5
	\sim	7 7	15 B F	ang距 _{追力}	咖啡 最大	動水 最小動	加水 管軸科	票 最大圧力	水 最小圧	力水 最	大動水 最小	動水 静水	位静水明	酒 静水口	- 静水圧上	
		16	計算点	離	(m) (47	位 	位。	5	頭	頭	圧	. 圧 (標高	im) (n	n) (MPa	最大水頭	厂厂
2	ļ l	/		(m)	(標	両m) (標同	nm)(標向n	ນ (,m)	(m)	(MPa)	(MPa)			· lm,	(MPa)
3 \$:1(短管)	路)	0	0.000	0.000 30	0.000 30.	25.00	0 5.0	00 5	5.000 0	.39296 -0.0	7012 30.0	00 5.00	0.0490	0 35.098	0.34396
4 5	い、短官は	ē6)	1 1	0.000 1	0.000 30	1.362 29.	344 23.00 244 23.00	0 7.3	62 6	0.844 0 3.944 0	.43656 -0.0	6709 20.0	00 7.00	0.0686	0 37.547	0.36796
6 8	3		1 7	6.923 E	6.923 3		5 F A -		7 – =	5.044 0	.10378 0.0	6117 30.0	00 7.50	0.0086	9 3.080	0.03018
7 a	3	1	-2 415	1.000 16	1.000 35	5.702 高十孚	↓点の中	间にあ	る勾配す	£11 0	.13428 0.0	5602 30.0	00 8.00	0 0.0784	0 5.702	0.05588
8 3	3		2 15	3.846 16	3,846 35	.802 点 0)場合、	両側の言	計算点の	り番○	.13540 0.0	5577 30.0	00 8.01	4 0.0785	4 5.802	0.05686
9 8)		3 23	0.769 24	0.769 38	3.512 日子	「表示さ	hZ		0	.16565 0.0	4960 30.0	00 8.39	0.0822	3 8.512 0 0.001	0.08342
11 3	1	3	-4 - 25 4 30	3.000 26 7.600	5.000 58 7.692 41	217	x/\C/	0.0		0	20980 0.0	9788 30.0 5761 30.0	00 8.50	0.0833	o 9.294 8 11.217	0.09108
12 8	3	4	-5 + 35	0.000 - 30	0.000 42	2.688 25.	167 18.50	0 24.1	88 6	5.667 0	.23704 0.0	6534 30.0	00 11.50	0.1127	0 12.685	0.12434
13 a	3	4	-5 136	7.000 37	7.000 43	3.279 24.	958 17.00	0 26.2	79	7.958 0	.25754 0.0	7799 30.0	00 13.00	0 0.1274	0 13.279	0.13014
14 a	3		5 38	4.615 39	4.615 43	3.892 24.	742 16.80	5 27.0	87 .	7.936 0	.26545 0.0	7778 30.0	00 13.19	5 0.1293	1 13.892	0.13614
15 8	3		6 46	1.538 47	1.538 46	5563 23. 203 00	312 15.95	5 30.6	08 7	7.858 0	.29996 0.0 29417 0.4	7/00 30.0	00 14.04	6 0.1376	5 16.563 9 10.000	0.16231
17 2	1 1		/ 53	0.402 54 5.385 62	5.385 51	.203 223	054 14.25	+ 34.0 3 37.5	75	7.801 0	.36823 0.0	7645 30.0	00 14.89	0.1459	2 21.825	0.21392
			5 51							· · · · · · · · · · · · · · · · · · ·	10177 04	76E1 20.0	00 16 50	7 0 1626	E 04 400	0.22012
18 a	3		9 69	2.308 70	2.308 54	1.400 21.3	210 13.40	3 40.9	97 7	7.807 0	.40177 0.0	0051 30.0	00 10.58	0.1020	5 24.400	0.20812
18 a 19 a)		9 69 10 76	2.308 70 9.231 77	2.308 54 9.231 56	1.400 21.3 5.926 20.3	210 13.40 368 12.55	3 40.9 2 44.3	97 74	7.807 0 7.816 0	.43486 0.0	7660 30.0	00 10.58	8 0.1709	9 26.926	0.26387
18 a 19 a 20 a	9 9 9		9 69 10 76 11 84	2.308 70 9.231 77 6.154 85	2.308 54 9.231 56 6.154 59	1.400 21. 3.926 20. 3.460 19.	210 13.40 368 12.55 532 11.70	3 40.9 2 44.3 1 47.7	97	7.807 0 7.816 0 7.831 0	.43486 0.0 .43486 0.0	7660 30.0 7674 30.0	00 10.58	0.1709 0.1793	9 26.926 3 29.460	0.26387

<u><出力条件>シート</u>の縦断図で指定した管路の全ての計算点、及び<u><管路縦断>シート</u>で与えられた勾 配変化点について表示します。計算点の中間に位置する勾配変化点の場合、最大動水位、最小動水位は 前後の計算点の値から直線補間で求めた値になります。

管軸標高は、<u><管路縦断>シート</u>から決めます。<u><管路縦断>シート</u>のデータは、ここの出力と縦断図 グラフのみで使用されます。最小圧力水頭が-10mを下回ってもそのまま表示されます。

圧力水頭は、動水位から管軸標高を差し引いたものです。

最大最小の判定は、

<h />

最大値が現れるセルはピンク色に、最小値が現れるセルは水色で表示されます。

縦断図は、縦断結果に対応して<LGraph>シートに表示されます。

縦断結果の個々の項目の意味を縦断図上で説明すると次の通りとなります。図では距離 1,500m の地点の説明となっています。

V1.1 で短管路の出力に対応し、管路縦断変化点の出力を追加しました。
V1.1.4 で MPa 単位の圧力、静水位関係の出力を追加しました。
v1.2.0 で、タイトル部分の管路名称列が長いとき 250 文字以上は表示しません。

(2) 時間変化グラフ

ツールバーの「時間変化グラフ」ボタン^{時間変化グラフ}を押します。

時間変化グラフを作成するには、次の条件が必要です。

① <出力条件>シートで、流量、動水位、節点の時間変化を表示する設定があること

② 計算が終了していること

③ 「読込・縦断図」ボタンで計算結果が読み込まれていること

	時間変化グラフ				
	グラフ一覧		─項目 管路 計算点 ── 項日		
	グラフ 1	グラフ追加	管路動水位		項目一覧
		グラフ削除	節点水位		
	タイトル		管路0-計算点 節点0		
	項目 管路 計算点		管路(1)-E 管路(2)-E 管路(3)-E 管路(4)-E 管路(5)-E		出力可能点一覧
グラフに含まれる項目 一覧	流量 管路(10)-E 動水位 管路(10)-E 流量 バルブ(V)		管路(6)-E 管路(7)-E 管路(8)-E 管路(9)-E	-	
			<く グラフに追加		
	項目の削除		OK ++)	/t/l	

次の手順でグラフの項目を指定します。

- ① 「グラフ追加」ボタンをクリック
- ② タイトル欄にグラフの表題を入力
- ③ 右の 「項目 管路 計算点」の「項目」リストから"管路動水位"、"管路流量"、"節点水位"のいず れかを選択します
- ④ 「管路 計算点 節点」リストから、グラフに表示したい計算点を選択します
 管路の次の()内が管路名称、一の右側が計算点番号です。
 「管路 計算点 節点」リストには、<u><出力条件>シート</u>で指定した地点が表示されます
- ⑤ 「<<グラフに追加」ボタンをクリック 左側の「項目 管路 計算点」の欄に選択した項目と計算点が追加表示されます。

グラフに項目を追加する場合、上の③~⑤を繰り返します、

グラフを分けて表示したいときには、上の①~⑤を繰り返します。

⑥ 「**OK**」を押すとグラフが作図されます。

グラフを削除するには、「グラフ一覧」リストで削除したいグラフを選択して、「グラフ削除」ボタンを クリックします。

グラフから、項目を削除したいときには、「グラフ一覧」リストでグラフを選択し、さらに、左側の「項 目 管路 計算点」から削除したい項目を選択して、「項目の削除」ボタンをクリックします。 流量と圧力といった異なる複数項目を選んで、同じ図に表示することも可能です。

ー度指定したグラフの設定条件は、データファイルの<TGraphIndex>シートに保存されます。 2度目からは、時間変化グラフ指定ウィンドウの「OK」ボタンを押すだけでグラフを作成できます。

時間変化グラフの例を以下に示します。

3-6 計算の進め方

(1) 初期値

水撃圧計算(管水路非定常水理計算)を行うためには、計算の最初の時点における水位と流速(流量)が必要になります。

本プログラムでは、水位はデータで与えることができますが、流速はゼロとして計算をします。したが って、初期状態は、静水状態とする必要があります。

管路内の水位は、接続する水位境界、水槽の水位に等しくします。複数の水位境界、水槽に接続する場合は、いずれかにバルブを設置し、初期状態でバルブを全閉しておく必要があります。

水槽に堰がある場合は、水槽水位は堰頂より低くします。

バルブは全閉状態、ポンプは停止状態にします。流量境界の初期状態は、ゼロにします。

バルブ、ポンプが水槽水位で決まる場合は、ぞれぞれバルブ全閉状態の水位、ポンプ停止状態の水位を 水槽の初期水位とします。

(2) 定常流れの作成

水撃圧は、静止状態から通水を開始したときにもある程度発生することがありますが、通常は通水状態 からバルブを閉鎖したとき、あるいはポンプを停止したときに大きな水撃圧が発生します。

そのため、まず定常的な通水状態を作成する必要があります。

バルブ 閉鎖状態から開放状態に変化させます

ポンプ 停止状態から運転状態に変化させます

流量境界 ゼロから定常的な流量に変化させます

これらの変化は、時間変化テーブルで与えます。急激に通水状態に移行するのではなく、ある程度 時間をかけて移行するように設定して下さい。通水状態に移行したら、そのままの状態にして管路全体 が定常的な流れになるまで時間をとって下さい。

管水路では、比較的短時間に定常状態に移行します。管路の長さなどの条件によっても変わりますが、 5 分ないし 10 分程度で十分なこともあります。条件を与えて計算を行い、時間変化グラフを観察して 定常状態になることを確認して下さい。

水槽と水槽を管路つないだオープンタイプパイプラインでは、サージング現象により水槽の振動が発生 し、定常的な流れが形成されないこともあります。

(3) 水撃圧の検討対象となるバルブ、ポンプの操作

定常状態に移行したことを確認してから、水撃圧の原因となるバルブ、ポンプの操作を行います。 バルブ閉鎖による水撃圧の場合は、バルブ閉鎖時間により水撃圧の大きさは変わります。 現実のバルブ操作状態等を勘案して、実験を行って下さい。

(4) 収束しない場合

水撃圧計算(管水路非定常水理計算)では、バルブ、ポンプなどが接続された節点部分の式を解くために、 繰り返し計算を行います。条件によっては、この繰り返し計算が収束しない場合もあります。 収束しないときは、<<u><計算時間>シート</u>の最大反復数を大きくし、収束判定を小さくして再度計算を行 って下さい。

4 バルブ特性データの作成

本プログラムでは、バルブの開度と水頭損失の関係を表すバルブ特性を自由に定義できます。 バルブ特性は、Valve.xls(Valve.xlsx)ファイルに格納します。

ツールバーで「バルブ特性」ボタン^{パルブ特性}を押すか、Valve.xls または Valve.xlsx を開いて編集する ことによりバルブ特性を定義できます。

2012/10/12 Valve.xlsx を製品に追加したことにより以下の表現を修正

Excel2007/2010 の場合、バルブ特性は Valve.xlsx ファイルを使用しますので、Valve.xls を修正しても 修正は反映されません。お使いの Excel のバージョンを確認して修正して下さい。 Excel2007/2010 をお使いの場合、できれば Valve.xls ファイルは削除して下さい。

バルブ特性は、Valve.xls(Valve.xlsx)の<バルブ特性>シートに定義します。

縦6列ごとに、複数のバルブ特性を定義できます。

Valve.xls(Valve.xlsx)の<バルブ特性>シートには、2個のバルブ特性が事前に格納されています。この データを修正してもかまいません。追加する場合には、M列以降に追加して下さい。事前定義の特性を 修正すると、例題の答えが変わりますので注意して下さい。

Valve.xls(Valve.xlsx)の<バルブ特性>シートには、グラフが表示されていますが、このグラフは参考で 表示したものです。バルブ特性を追加するときには、グラフはなくてもかまいません。

ここで、バルブ流量の表し方について示します。

バルブ流量は、次式で表します。3

$Q = C'A_v \sqrt{2g\Delta H}$ (1) $\pm \hbar k$ (2) (2)

Q:バルブ通過流量、A:バルブ設置管の断面積、Av:バルブの断面積g:重力加速度、

ΔH:バルブ損失水頭(バルブ前後の動水位差)、C、C':流量係数

(1)式は、バルブのみの特性を表した式で、(2)式は、バルブ以外の局所損失も含んで表した式です。 一方 ΔH を、バルブの損失係数(f_v)とバルブ以外の損失係数(f₀)から、次のように表すことができます。

$$\Delta H = f_v \frac{V_v^2}{2g} + f_0 \frac{V^2}{1g}$$
(3)

 $V_v: バルブ通過流速、V: バルブ設置管の通過流速です。$ $これらの2つの式から、Cを<math>f_v \ge f_0$ で表すと次の通りとなります。

$$C = \frac{1}{\sqrt{f_v \frac{A^2}{A_v^2} + f_0}}$$
(4)

バルブ全閉時には C=0 となります。

バルブ特性を表す資料では、開度がある値以下の場合の値が示されていないことが多いので、下限開度 を決め、下限開度以下は、次式で**C**を決めます。

³ 臼杵宣春、吉野秀雄、中達雄(2001):パイプラインにおける水理解析手法について(第1回) ARIC 情報 No.62

$$C = \frac{\frac{O}{O_{min}}}{\sqrt{f_v \frac{A^2}{A_v^2} + f_0}}$$
(5)

O: バルブ開度、**O**min: 下限開度

本プログラムでは、バルブの特性を C'で表した場合でも、 f_v で表した場合でも対応が可能です。C'で表した場合、 $f_v=1/C'^2$ で f_v を求め、その他の損失を加えて(4)式または、(5)式で C を求めます。

2012/7/5 追加/修正

Valve.xl(Valve.xlsx)s にあらかじめ定義されているものは、文献⁴及び文献に付随するプログラムに記載 されているものと、バルブ設備計画設計技術指針(P.13)⁵にある図から読み取ったものです。次に一覧を 示します。

	名称	バルブ種類	出典
1	В	バタフライ弁	4
2	F	フロート弁	4
3	PO	多孔可変オリフィス弁	5
4	А	オート弁	5
5	LB	低キャビテーションバタフライ弁	5
6	SG	ソフトシール仕切弁	5
7	PS	多孔式スリーブ弁	5
8	R	ロート弁	5
9	G	仕切弁	5
10	B2	バタフライ弁	5

各バルブの特性を元文献の図と比較したものを以下に示します。

⁴ 臼杵宣春、吉野秀雄、中達雄(2001):パイプラインにおける水理解析手法について(第1回) ARIC 情報 No.62

⁵ 農林水産省農村振興局整備部設計課(2002):「バルブ設備計画設計技術資料」 平成 14 年 8 月 (社)農業土木事業協会 発行

左:多孔可変オリフィス弁 右:オート弁

左:低キャビテーションバタフライ弁 右:ソフトシール仕切弁

ソフトシール仕切弁のように中間開度での損失係数が小さい場合、全閉直前に流量が急変して大きな水 撃圧が発生します。このような場合には、バルブメーカ等に確認の上、緩閉塞があれば、開度時間変化 パターンを与えるときに、ベジエ曲線補間を使用して緩閉塞を近似するようにしてください。 Valve.xls の定義方法は以下に示すとおりです。

		Γ	この部分はコメン	トです			
1 バルブ特性名	称				3	下限開度	
		A A	/ в	K	D	E	F
	1	В	<u>バタフライ弁</u>	0.05			
	2	開度	F	式型	系数a	係数b	係数c
	3	0		1	9260.1		
ビーバルフ特性を ビー	4	0.05	9260.085572	3	1	-24.8557	5.2094
	5	0.1049	399.9828771	3	1	-8.114	3.4532
	6	0.142	199.9760565	3	্য প্	-3.691	2.8251
	7	0.7654	0.999924294	3	1`	-2.4372	1.8654
	8	0.8889	0.499933835	3	1	-0.8723	0.4743
	9	1	0.39994475	3	1	-2.8723	0.4743
	10						
	11						
	12						
	13			1	定数		Ì
	14			2	·~~	h	
	15			3	10の指数	- t	
	16				*10^(b*x+	c)	
	17			4	た乗きへ	 ∍*xîh	
	18						

上図の1(1個目の場合 A1 セル)

バルブ特性の名前を入れます

任意の文字列が使えます

<節点管路>シートのバルブ定義で参照します

上図の2(1個目の場合 B2 セル)

バルブ特性を損失係数(fv)で与えるとき F

バルブ特性を流量係数(C')で与えるとき C

上図の3(1個目のとき C1 セル)

バルブ開度の下限開度を示します

下限開度以下では、(5)式を用います

3行目以降はバルブ特性を区間ごとに与えます。区間内は、定数、1次式、10の指数式、べき乗式のいずれかの方法で補間します

1列目 各区間の継ぎ目の開度

式の形

3 列目

定数のとき 1

1次式のとき 2

10 の指数式のとき 3

べき乗式のとき 4

4列目~6列目

式の係数値を下記にしたがって入れます

1	定数	4 列目:定数值		
2	1 次式 ax+b	4 列目:a	5 列目:b	
3	10 の指数式	4 列目:a	5 列目:b	6 列目:c
	a*10 ^(bx+c)			
4	べき乗式 ax ^b	4 列目:a	5 列目:b	

特性曲線データ値各行の与え方は次の通りです

1 行目	下限開度以下の定義ですので、1 列目は、ゼロ
	3 列目式の形は 1(定数)とします
2 行目以降	1 列目、2 列目は、式の適用範囲左側の継ぎ目の点の値を入れます
	2 列目の値は、できるだけ Excel のセル数式を使って定義して下さい
最終行	1列目は 全開時ですから1を入れます

2 列目は 全開時の F また C'の値です

式の形、定数は直前のものと同じにして下さい

5 サンプルデータ

5-1 Sample1

単管路の先端にあるバルブを操作したときの水撃圧を求める問題です。

初期値は、静水状態なのでバルブは全閉とし、1分間で開度 100%まで開き、開始から5分後に バルブ閉鎖時間2分で全閉。

バルブ全閉直前に最大水撃が生じます。動水位の縦断図から、バルブ直前で水撃圧が最大になることが わかります。

2012/07/05 追加

Sample1 と同じ管路で、バルブの種類を変えた例を示します。

ここでは、当該バルブ種類がこの例の管径に適さない場合もあります。あくまで、管路の条件が同じで バルブ種類を変えたときにどのように変わるかを示したものです。

バルブ名称	バルブ種類
PO	多孔可変オリフィス弁
А	オート弁
LB	低キャビテーションバタフライ弁
SG	ソフトシール仕切弁
PS	多孔式スリーブ弁
R	ロート弁
G	仕切弁
B2	バタフライ弁

以下に、各種バルブの計算結果を時間変化図で示します。バルブの種類により水撃圧の大きさが異なる ことがわかります。計算結果を子細に見ると青い線で示したバルブ通過流量の時間変化が大きいところ で大きな水撃が発生していることがわかると思います。ソフトシール仕切弁では、流量変化が全閉直前 に急激に生じて水撃が大きくなっています。ソフトシール仕切弁の場合で、バルブ開度変化を直線的に 閉めるのではなく緩やかに閉塞するように、前に示したベジエ曲線補間を使用した例も併せて示しまし た。感閉塞することにより水撃は小さくなります。

ソフトシール仕切弁で緩閉塞した例が、Sample1_SG.xlsです。

PO 多孔可変オリフィス弁

LB 低キャビテーションバタフライ弁

SG ソフトシール仕切弁 緩閉塞 ベジエパラメータ 0,0.5,0.01

PS 多孔式スリーブ弁

B2 バタフライ弁

5-2 Sample2

長大な単管路に分水があり、末端のバルブを操作したときの水撃圧を求める例です。

流量境界

分水は全て流量境界で与えています。末端バルブ閉鎖時でも分水は継続します。

バルブ閉鎖直後に最大水撃が生じますが、水撃圧は時間とともに急激に減衰します。これは、分水が継続していることにより圧力が吸収されるためです。

5-3 Sample3

Sample1の末端バルブが水槽に接続されて、水槽水位によりバルブ開度が制御される場合です。水槽に 設置されたフロートによりバルブ開度を変えるフロートバルブの例です。水槽からの流出量を変化させ ることによりバルブの開閉を起こします。

Sample3A は、水槽内にバルブがある場合、Sample3B は、バルブの吐出口が水槽水面の上にあり空中 放流で水槽に流出する場合です。

Sample3A

Sample3B

5-4 Sample4

管水路を水槽でつないだいわゆるオープンタイプパイプラインの例です。 この例では、水撃圧ではなく水槽間の振動で生じるサージング現象を解析します。

各水槽で数m程度の水面振動が生じていることがわかります。

5-5 Sample5

ポンプ送水系の場合です。ポンプは2台が並列になっており、いずれも水槽水位によりオンオフの制御 が行われます。2台のポンプの制御水位は変えてあります。水槽からの流出量を変化させることにより ポンプのオンオフを発生させます。

2台目のポンプが停止したときに水撃圧が発生します。

5-6 Sample6

単管路に分水バルブが3個所ある場合です。閉鎖するバルブは、最遠点の"4V"です。

バルブ閉鎖時に水撃圧が発生しますが、すぐに減衰します。他のバルブが開いているとこのように水撃 圧は減衰します。管路3の終点、中間点、始点における動水位変化をグラフ化したのが下図です。終点 で発生した水撃圧が上流に向かって減衰していることがわかります。

(2014/04/22 追加)

Sample1のように、1個所のバルブを操作した場合には、バルブ閉鎖後のバルブ直上流動水位は静水位 に収束しますが、Sample6では、途中分水が開いているため静水位には収束しません。 縦断図を作成すると次のようになります。

また、<縦断結果>シートでは、静水圧上圧力が負で表示されます。

	A	В	С	D	E	F	G	Н	Ι	J	K	L	M	Ν	0	Р
								縦断								
	管路	計算点	管路内距 離	追加距離	最大動水 位	最小動水 位	管軸標高 (標高m)	(1)-(2)-(3) 最大圧力水 頭	最小圧力水 頭	最大動水 圧	最小動水 圧	静水位 (漂亮m)	静水頭	静水圧 (MP-)	静水圧 上最大	静水圧上 最大動水
2			(m)	(m)	(標高m)	(標高m)	(小茶回川)	(m)	(m)	(MPa)	(MPa)	(小売同口口)	(m)	(MFa)	/八页貝 (m)	(MPa)
39	2	15	1500.000	3500.000	22.017	19.967	22.500	-0.483	-2.533	-0.00473	-0.02482	50.000	27.500	0.26950	-27.983	-0.27423
40	2	16	1600.000	3600.000	21.385	19.252	22.000	-0.615	-2.748	-0.00603	-0.02693	50.000	28.000	0.27440	-28.615	-0.28043
41	2	17	1700.000	3700.000	20.748	18.537	21.500	-0.752	-2.963	-0.00737	-0.02904	50.000	28.500	0.27930	-29.252	-0.28667
42	2	18	1800.000	3800.000	20.108	17.822	21.000	-0.892	-3.178	-0.00874	-0.03114	50.000	29.000	0.28420	-29.892	-0.29294
43	2	19	1900.000	3900.000	19.468	17.107	20.500	-1.032	-3.393	-0.01011	-0.03325	50.000	29.500	0.28910	-30.532	-0.29921
44	2	20	2000.000	4000.000	18.828	16.392	20.000	-1.172	-3.608	-0.01149	-0.03536	50.000	30.000	0.29400	-31.172	-0.30549
45	3	0	0.000	4000.000	18.828	16.392	20.000	-1.172	-3.608	-0.01149	-0.03536	50.000	30.000	0.29400	-31.172	-0.30549
46	3	1	100.000	4100.000	19.521	16.105	19.500	0.021	-3.395	0.00021	-0.03327	50.000	30.500	0.29890	-30.479	-0.29869
47	3	2	200.000	4200.000	20.569	15.818	19.000	1.569	-3.182	0.01538	-0.03118	50.000	31.000	0.30380	-29.431	-0.28842
48	3	3	300.000	4300.000	21.596	15.532	18.500	3.096	-2.968	0.03034	-0.02909	50.000	31.500	0.30870	-28.404	-0.27836
49	3	4	400.000	4400.000	22.593	15.245	18.000	4.593	-2.755	0.04502	-0.02700	50.000	32.000	0.31360	-27.407	-0.26858
50	3	5	500.000	4500.000	23.544	14.958	17.500	6.044	-2.542	0.05924	-0.02491	50.000	32.500	0.31850	-26.456	-0.25926
51	3	6	600.000	4600.000	24.446	14.671	17.000	7.446	-2.329	0.07297	-0.02282	50.000	33.000	0.32340	-25.554	-0.25043
52	3	7	700.000	4700.000	25.295	14.384	16.500	8.795	-2.116	0.08619	-0.02073	50.000	33.500	0.32830	-24.705	-0.24211
53	3	8	800.000	4800.000	26.090	14.098	16.000	10.090	-1.902	0.09888	-0.01864	50.000	34.000	0.33320	-23.910	-0.23432
54	3	9	900.000	4900.000	26.819	13.811	15.500	11.319	-1.689	0.11092	-0.01655	50.000	34.500	0.33810	-23.181	-0.22718
55	3	10	1000.000	5000.000	27.374	13.524	15.000	12.374	-1.476	0.12126	-0.01446	50.000	35.000	0.34300	-22.626	-0.22174
56	3	11	1100.000	5100.000	27.865	13.237	14.500	13.365	-1.263	0.13098	-0.01237	50.000	35.500	0.34790	-22.135	-0.21692
57	3	12	1200.000	5200.000	28.295	12.950	14.000	14.295	-1.050	0.14009	-0.01029	50.000	36.000	0.35280	-21.705	-0.21271
58	3	13	1300.000	5300.000	28.668	12.664	13.500	15.168	-0.836	0.14865	-0.00820	50.000	36.500	0.35770	-21.332	-0.20905
59	3	14	1400.000	5400.000	28.999	12.377	13.000	15.999	-0.623	0.15679	-0.00611	50.000	37.000	0.36260	-21.001	-0.20581
60	3	15	1500.000	5500.000	29.338	12.090	12.500	16.838	-0.410	0.16501	-0.00402	50.000	37.500	0.36750	-20.662	-0.20249
61	3	16	1600.000	5600.000	29.683	11.803	12.000	17.683	-0.197	0.17330	-0.00193	50.000	38.000	0.37240	-20.317	-0.19910
62	3	17	1700.000	5700.000	30.036	11.517	11.500	18.536	0.017	0.18165	0.00016	50.000	38.500	0.37730	-19.964	-0.19565
63	3	18	1800.000	5800.000	30.398	11.230	11.000	19.398	0.230	0.19010	0.00225	50.000	39.000	0.38220	-19.602	-0.19210
64	3	19	1900.000	5900.000	30.768	10.943	10.500	20.268	0.443	0.19862	0.00434	50.000	39.500	0.38710	-19.232	-0.18848
65	3	20	2000.000	6000.000	31.144	10.656	10.000	21.144	0.656	0.20721	0.00643	50.000	40.000	0.39200	-18.856	-0.18479
66																

Sample6 の計算では、静水圧を超える水撃圧は生じないということになります。 Sample6 で末端バルブ 4V 以外の途中分水バルブ 2V と 3V を閉じたままにして計算したときの縦断図

は次のようになります。この例は Sample6B にあります。

図に見られるように途中分水バルブを開いたものに比較して遙かに大きな水撃が計算されます。 管路設計で水撃圧に対する耐圧検討で最大水撃を求める場合には、Sample6Bのように途中分水バルブ を閉じた計算を行う必要があります。

5-7 Sample7

管網配管の例です。管網の節点に流量境界があり、末端のバルブを閉鎖した場合の水撃圧を求めます。

データは対称形で与えているので、縦断図で表示した場合、1-2-3-6-11の管路縦断と、1-4-9-12-13の管路縦断は等しくなります。

6 プログラムサポート

製品の使用法、問題点などに関するお問い合わせは、なるべく E-mail でお願いします。 このマニュアルを Acrobat Reader で開き<u>こちら</u>のリンクをクリックして下さい。リンクからメールソ フトが開かない場合は、<u>当社ホームページ</u>からお問い合わせください。 お問い合わせになる場合、下記の事項を記載願います。

・製品シリアル番号

(製品シリアル番号は、Excel ツールバーの「登録」ボタン^{登録}を押すと表示されます)

・お名前、会社名、連絡先

必要に応じて、下記のインターネットホームページにもサポート情報、バージョンアップ情報を掲載い たしますので、ご利用下さい。

https:/hydro-sys.co.jp

謝辞・参考文献

本プログラムの水撃圧計算手法は、独立行政法人農村工学研究所(現 国立研究 開発法人 農業・食品産業技術総合研究機構 農村工学部門)の故 吉野秀雄博士 が研究された手法、プログラムに基づいています。本プログラムでは、吉野博士の 手法をさらに発展させて一般化し、新たな機能も追加しました。 吉野博士の研究成果がなければ、本プログラムもなかったものと考えます。貴重

な研究成果を発表された吉野博士に深く感謝申し上げるとともに、早世された吉野博士に謹んで哀悼の意を表します。

【参考文献】

- 吉野 秀雄(2003): パイプラインの水撃圧推定方法について 水と土 No.132
- 吉野 秀雄・中 達雄・向井 章恵(2002):水田配水系パイプラインにおける水撃圧特性について 水と土 No.128
- 吉野 秀雄・中 達雄・田中 良和 他(2001):パイプライン基礎方程式が水撃圧推定結果に 及ぼす影響について 水と土 No.126
- 臼杵 宣春・吉野 秀雄・中 達雄(2001):パイプラインにおける水理解析手法について(第1回) ARIC 情報 No.62 技術ノート
- 吉野 秀雄・中 達雄・臼杵 宣春・田中 良和・向井 章恵(2001): パイプラインにおける 水理解析手法について(第2回) ARIC 情報 No.63 技術ノート
- 吉野 秀雄・中 達雄・臼杵 宣春(2001): パイプラインにおける水理解析手法について(第3回) ARIC 情報 No.64 技術ノート
- 吉野 秀雄・中 達雄・臼杵 宣春(2001): パイプラインにおける水理解析手法について(第4回) ARIC 情報 No.65 技術ノート

7 使用許諾契約書

ハイドロシステム株式会社(以下「弊社」という)は、弊社ソフトウェア製品「水撃圧プログラム 2010(Excel版)」(プログラム、マニュアル等弊社からお客様に提供される一切の関連資料を含み、以下 「プロダクツ」という)に、以下の条項を適用いたします。

1. 使用権の許諾

- (1) お客様は、プロダクツを、お客様の所有する一時に一台のコンピュータにおいてのみ組み込んで 使用することができます。
- (2)お客様は、日本国内においてのみ、プロダクツを使用することができます。
 お客様がプロダクツをサンプル版で使用する場合、サンプル版で得られた計算結果を第三者に提供することはできません。
- (3) お客様は、プロダクツに含まれるライブラリファイルを用いて、いかなるアプリケーションを作 成することもできません。
- (4)お客様は、プロダクツのプログラムの複製に関しては、バックアップを目的としてのみこれを行 なうことができます。プログラム以外のプロダクツに関しては、弊社の承諾のない限り、お客様 は一切の複製を行なうことはできません。
- (5) お客様は、プロダクツを改変、逆コンパイルまたは逆アセンブルすることはできません。
- (6)本使用条件によって、プロダクツに関する無体財産権がお客様に移転されるものではありません。
 - 2. 保証及び責任の制限
- (1)弊社は、プロダクツに関しいかなる保証も行いません。プロダクツに関して発生する問題は、す べてお客様の責任と費用負担をもって処理していただくものとします。
- (2)前項の規定にかかわらず、必要事項を記入したユーザ登録用紙を弊社宛に返送された場合、弊社 は、お客様がプロダクツを受け取った日から1年間、以下のユーザサポートを実行いたします。
- ①弊社が重大な誤りであると判断してプロダクツ中の誤りを修正した場合、修正された製品とその内容を無償にて提供致します。
- ②プロダクツの機能アップ等のご案内を差し上げ、そこでご案内するバージョンアップサービスを提 供致します。
- (3)弊社は、その原因の如何にかかわらず、プロダクツに関して発生する、お客様の逸失利益、特別な事情から生じた損害(損害発生の可能性につき弊社が現実に予見しまたは予見し得た場合を含む)及び第三者からお客様に対してなされた請求に基づく損害について一切の責任を負わないものとします。弊社が上記以外の損害について責任を負ういかなる場合においても、弊社の責任の上限は、お客様がプロダクツの代金として実際に支払った金額に限定されるものとします。

3. 期間

- (1)本使用条件は、お客様がプロダクツをお受取になった日から発効します。
- (2)お客様が本使用条件のいずれかの条項に違反した場合は、お客様のプロダクツを使用する権利は 当然に失効するものと致します。この場合、お客様の支払った代金は返還されません。さらに、 お客様は、お客様自身の責任と費用負担をもって速やかにプロダクツを弊社宛返品すると同時に、 バックアップの目的で複製された複製物及びプロダクツに関する一切のものを廃棄しなければな りません。
 - 4.その他
- (1)本使用条件に関わる紛争は、東京地方裁判所を管轄裁判所として解決するものとします。

無断複製、転載厳禁

水撃圧プログラム 2010 (Excel 版) マニュアル

2010年9月1日発行

2022年4月28日改訂1.5.0版

発行 **ハイドロシステム株式会社**

〒231-0806 横浜市中区本牧町2丁目360番地TEL045-263-6647FAX045-263-6648

Microsoft, MS は米国 Microsoft Corporation の登録商標です。

Windows は米国 Microsoft Corporation の商標です。

Excel は米国 Microsoft Corporation の登録商標です。

.NET Framework は米国 Microsoft Corporation の登録商標です。